首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
  2005年   3篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
The dependence of the degree of fluorene and fluoranthene degradation by the fungus Pleurotus ostreatus D1 on the culture medium composition has been studied. Polycyclic aromatic hydrocarbons (PAHs) have been transformed in Kirk’s medium (under conditions of laccase production) with the formation of a quinone metabolite and 9-fluorenone upon the use of fluoranthene and fluorene as substrates, respectively. More complete degradation with the formation of an intermediate metabolite, phthalic acid that has undergone subsequent utilization, has occurred in basidiomycete-rich medium (under the production of both laccase and versatile peroxidase). The formation of phthalic acid as a metabolite of fluoranthene degradation by lignolytic fungi has been revealed for the first time. The data allow the supposition that both extracellular laccase and laccase on the mycelium surface can participate in the initial stages of PAH metabolism, while versatile peroxidase is necessary for the oxidation of the formed metabolites. A scheme of fluorene metabolism by Pleurotus ostreatus D1 is suggested.  相似文献   
2.
Microbiology - A biopreparation consisting of the cells of Azospirillum brasilense strain SR80 immobilized on wood biochar was characterized. Sorption of oil by biochar and its colonization by...  相似文献   
3.
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization.A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization.  相似文献   
4.
From the roots and root exudates of 3-week-old plants of alfalfa (Medicago sativa L.), anionic and cationic peroxidases differing in principal physicochemical and catalytic properties were isolated and purified. Main features of anionic peroxidases detected in the roots and root exudates were identical. Phenanthrene present in the soil used for alfalfa growing influenced the number of forms and activity of peroxidases in crude enzyme preparations but did not affect the properties of pure enzymes. In the presence of a synthetic mediator, purified peroxidases can oxidize phenanthrene and its derivatives, including potential microbial metabolites of polycyclic aromatic hydrocarbons (PAH). The fact that the enzymes excreted in root exudates in a purified form can oxidase PAH proves their participation in degradation of PAH and their microbial metabolites in alfalfa rhizosphere. These new data indicate that the processes of plant and microbial degradation of pollutants in the rhizosphere are coupled; they are relevant to understanding the molecular mechanisms of degradation of persistent pollutants by plant-microbial complexes.  相似文献   
5.
The effect of polycyclic aromatic hydrocarbons (PAHs) on the time course of laccase production by the fungus Pleurotus ostreatus D1 under conditions of submerged cultivation on Kirk’s medium has been studied. It has been shown that phenanthrene, fluoranthene, pyrene, and chrysene actively induce this enzyme, whereas fluorene and anthracene had a smaller effect. Addition of Mn2+ ions to cultivation medium elevates the laccase activity twofold and more in the presence of all the studied PAHs. Electrophoresis under nondenaturing conditions demonstrates induction of additional laccase forms by xenobiotics. Ligninolytic peroxidase activities are undetectable under the conditions used.  相似文献   
6.
A dominant form of cationic peroxidase (PO-2) was isolated from sorghum (Sorghum bicolor L. Moench) roots and purified to electrophoretically homogeneous state. The enzyme is a monomer with mol wt of 49.7 kD. The optimum pH and the main catalytic constants (KM, Vmax, kcat) were determined for oxidation of the main substrates including Н2О2, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), 2,7-diaminofluorene, syringaldazine, 2,6-dimethoxyphenol, and o-dianisidine. The KM values increased in the sequence: H2O2 < 2,7-diaminofluorene < ABTS < o-dianisidine, whereas the maximum turnover number (93.9 s–1) was found for 2,7-diaminofluorene. Based on the analysis of molecular and catalytic properties of the enzyme, it was proven that PO-2 is a typical cationic plant peroxidase. Polycyclic aromatic hydrocarbons (phenanthrene, anthracene, fluorene), 2,2'-diphenic acid, and Ni ions had no significant influence on the activity of PO-2. The enzyme was inhibited by p-aminobenzoic acid, NaN3, 1-naphthol, 9,10-anthraquinone, and 9,10-phenanthrenequinone. In the presence of NaN3, 1-naphthol, and 9,10-phenanthrenequinone, a mixed competitive/noncompetitive type of inhibition was noted. The peroxidase PO-2 was found to oxidize synthetic anthraquinone dyes, phenanthrene, and some oxygenated derivatives of polycyclic aromatic hydrocarbons (9-phenanthrol; 1-naphthol; and 1-hydroxy-2-naphthoic, salicylic, and 2,2'-diphenic acids), which indirectly confirms the coupled plant–microbial metabolism of these compounds in the root zone of sorghum. The results indicate that 9,10-phenanthrenequinone and 2,2'-diphenic acid are the products of peroxidase-catalyzed oxidation of 9-phenanthrol.  相似文献   
7.
A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.  相似文献   
8.
The capability of plants to promote the microbial degradation of pollutants in rhizosphere soil is a principal mechanism of phytoremediation of PAH-contaminated soil. The formation of a specific rhizosphere microbocenosis with a high degradative potential toward contaminants is largely determined by plant species. The comparative PAH-degradation in unplanted soil and in soil planted with reed (Phragmites australis) and alfalfa (Medicago sativa) was studied in pot experiments during 2 years. Both alfalfa and reed successfully remediated contaminated soil by degrading 74.5 and 68.7% of PAHs, respectively. The study of the rhizosphere, rhizoplane, and unplanted-soil microflora in experimental pots showed that alfalfa stimulated the rhizosphere microflora of PAH-contaminated soil more effectively than did reed. Alfalfa clearly enhanced both the total number of microorganisms (1.3 times, according to fluorescence microscopy data) and the rate of the PAH-degrading population (almost seven times, according to plate counting). The degradative potential of its rhizosphere microflora toward PAHs was higher than the degradative activity of the reed rhizosphere. This study provides relevant information for the successful application of alfalfa to phytoremediate PAH-contaminated soil.  相似文献   
9.
The respiratory activity ofAcinetobacter calcoaceticus TM-31 with resect to alkane hydrocarbons was studied. The dynamics of oxygen consumption by the cells while assimilatingn-hexadecane was assayed by a modified technique using an oxygen electrode. The dependence of cell respiratory activity on the amount ofn-hexadecane within the concentration range of 0.03–0.66% was determined. It was demonstrated that the cells also displayed respiratory activity towards other medium-chainn-alkanes: hexane, octane, decane, tridecane, and heptadecane. Thus, we demonstrated the possibility of determining alkanes by measuring the respiratory activities of microorganisms.  相似文献   
10.
The possibility of using multicomponent systems, including plants, mineral fertilizers, and plant growth promoting microorganisms, has been studied in vegetative experiments in order to stimulate phytoremediation of oil-sludge-contaminated soil. Winter rye (Secale cereale L.) was used as the principal phytoremediating plant species, whereas alfalfa (Medicago sativa L.), nitrogen fertilizer (ammonium nitrate), and a PGPR strain (Azospirillum brasilense SR80) were applied as additional components, individually or in various combinations. The obtained data revealed the critical importance of alfalfa for phytoremediation of hydrocarbon-contaminated soil. Application of different multicomponent treatments resulted in approximately 70% reduction of pollutant concentration in soil. The developed technological approaches were successfully tested in the remediation of an ex-oil-sludge pit on the ground of a petroleum refinery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号