首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
排序方式: 共有38条查询结果,搜索用时 109 毫秒
1.
Expression of foreign enzymes in yeast is a traditional genetic engineering approach; however, useful secretory enzymes are not produced in every case. The hyperthermostable α-amylase encoded by the AmyL gene of Bacillus licheniformis was expressed in Saccharomyces cerevisiae; however, it was only weakly produced and was degraded by the proteasome. To determine the cause of low α-amylase production, AmyL was expressed in a panel of yeast mutants harboring knockouts in non-essential genes. Elevated AmyL production was observed in 44 mutants. The knockout genes were classified into six functional categories. Remarkably, all non-essential genes required for N-linked oligosaccharide synthesis and a gene encoding an oligosaccharyl transferase subunit were identified. Immunoblotting demonstrated that differently underglycosylated forms of AmyL were secreted from oligosaccharide synthesis-deficient mutants, while a fully glycosylated form was produced by wild-type yeast, suggesting that N-linked glycosylation of AmyL inhibited its secretion in yeast. Mutational analysis of six potential N-glycosylation sites in AmyL revealed that the N33Q and N309Q mutations remarkably affected AmyL production. To achieve higher AmyL production in yeast, all six N-glycosylation sites of AmyL were mutated. In wild-type yeast, production of the resulting non-glycosylated form of AmyL was threefold higher than that of the glycosylated form.  相似文献   
2.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   
3.
Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.  相似文献   
4.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.  相似文献   
5.
The human MrgX3 gene, belonging to the mrgs/SNSRs (mas related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.  相似文献   
6.
Abstract: The tissue distribution of neurotrophin-3 (NT-3) was investigated in rats at 1 month of age using a newly established, sensitive two-site enzyme immunoassay system for NT-3, as well as the immunocytochemical localization of this protein. The immunoassay for NT-3 enabled us to quantify NT-3 at levels > 3 pg per assay. In the rat brain, NT-3 was detectable only in the olfactory bulb (0.54 ng/g wet weight), cerebellum (0.71 ng/g), septum (0.91 ng/g), and hippocampus (6.3 ng/g). By contrast, NT-3 was widely distributed in peripheral tissues. Appreciable levels of NT-3 were also found in the thymus (31 ng/g), heart (38 ng/g), diaphragm (21 ng/g), liver (45 ng/g), pancreas (892 ng/g), spleen (133 ng/g), kidney (40 ng/g), and adrenal gland (46 ng/g). An antibody specific for NT-3 bound to pyramidal cells in the CA2-CA4 regions of the hippocampus, to A cells in the islets of Langerhans in the pancreas, to unidentified cells in the red pulp of the spleen, to liver cells, and to muscle fibers in the diaphragm from rats at 1 month of age. Molecular masses of NT-3-immunoreactive proteins in the hippocampus and pancreas were 14 and 12 kDa, respectively. Thus, in rats, NT-3 was detected in restricted regions of the brain and in the visceral targets of the nodose ganglia at high concentrations. Our present results suggest that NT-3 not only functions as a classical target-derived neurotrophic factor but also can play other roles.  相似文献   
7.
8.
9.
A cis-acting locus, Z, of plasmid pSRl functions in stable maintenance of the plasmid in the native host, Zygosaccharomyces rouxii. The Z locus was shown to be located in a 482 by sequence in the 5′ upstream region of an open reading frame, P, by subcloning various DNA fragments in a plasmid replicating via the ARS1 sequence of the Saccharomyces cerevisiae chromosome. Northern analysis revealed that the Z region is not transcribed in either the native host Z. rouxii or the heterologous host S. cerevisiae. The Z region is protected from microccocal nuclease attack in Z. rouxii but not in S. cerevisiae, its protection depending on the product of the S gene encoded by pSR1. Gel retardation assays suggested that a factor present in nuclear extracts of Z. rouxii cells, irrespective of the presence or absence of a resident pSRI plasmid, binds to a 111 by Rsal-Sacll sequence in the Z region. These findings suggest that a host protein binds to the Z locus and that the S product interacts with this DNA-protein complex and stabilizes pSRl.  相似文献   
10.
Pleiotropic function of Toll-like receptors   总被引:3,自引:0,他引:3  
A group of type I transmembrane proteins, Toll-like receptors (TLRs) discriminate various microorganism-associated molecular structures that can function as immune adjuvants. Each TLR signaling has an overlapping but distinct function, which largely depends on intracellular adaptor molecules. Clarifying the functions and signaling of TLRs should provide us with critical information for manipulating the host defense mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号