首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3407篇
  免费   220篇
  国内免费   1篇
  2022年   9篇
  2021年   26篇
  2020年   32篇
  2019年   49篇
  2018年   45篇
  2017年   51篇
  2016年   62篇
  2015年   110篇
  2014年   114篇
  2013年   194篇
  2012年   247篇
  2011年   200篇
  2010年   149篇
  2009年   138篇
  2008年   233篇
  2007年   256篇
  2006年   223篇
  2005年   205篇
  2004年   221篇
  2003年   221篇
  2002年   211篇
  2001年   60篇
  2000年   49篇
  1999年   53篇
  1998年   48篇
  1997年   23篇
  1996年   34篇
  1995年   26篇
  1994年   31篇
  1993年   23篇
  1992年   29篇
  1991年   37篇
  1990年   22篇
  1989年   14篇
  1988年   20篇
  1987年   19篇
  1986年   12篇
  1985年   17篇
  1984年   18篇
  1983年   15篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   5篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
  1973年   6篇
  1972年   7篇
  1971年   4篇
排序方式: 共有3628条查询结果,搜索用时 31 毫秒
1.
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.  相似文献   
2.
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.  相似文献   
3.
4.
Abstract: To investigate the role of phosphorylation in the turnover and transport of neurofilament (NF) proteins in vivo, we studied their solubility properties and axonal transport in the rat sciatic nerve using phosphatase inhibitors to minimize dephosphorylation during preparation. About 20% of the 200-kDa subunit (NF-H) in the axon was soluble in the 1% Triton-containing buffer under the present conditions, whereas this amount was less and more variable in the absence of phosphatase inhibitors. The 68-kDa subunit (NF-L) was exclusively insoluble and not affected by the inhibitors. Such selective solubilization of NF-H by phosphorylation differed significantly from the in vitro phosphorylation with cyclic AMP-dependent protein kinase, which resulted in NF disassembly. The carboxy-terminal phosphorylation state of NF-H probed with the phosphorylation-sensitive antibodies was also not directly related to solubility. The solubility of NF-H did not differ along the nerve. In contrast, the solubility of l -[35S]methionine-labeled, transported NF-H was lowest at the peak of radioactivity. Higher solubility at the leading edge, regardless of its location along the nerve, indicates that NF-H solubility is positively correlated with the rate of NF transport.  相似文献   
5.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   
6.
7.
8.
Successful automatic self-pollination in flowering plants isdependent on the correct development of reproductive organs.In the stamen, the appropriate growth of the filament, whichlargely depends on the mechanical properties of the cell wall,is required to position the anther correctly close to the stigmaat the pollination stage. Xyloglucan endotransglucosylase/hydrolases(XTHs) are a family of enzymes that mediate the constructionand restructuring of xyloglucan cross-links, thereby controllingthe extensibility or mechanical properties of the cell wallin a wide variety of plant tissues. Our reverse genetic analysishas revealed that a loss-of-function mutation of an ArabidopsisXTH family gene, AtXTH28, led to a decrease in capability forself-pollination, probably due to inhibition of stamen filamentgrowth. Our results also suggest that the role of AtXTH28 inthe development of the stamen is not functionally redundantwith its closest paralog, AtXTH27. Thus, our finding indicatesthat AtXTH28 is specifically involved in the growth of stamenfilaments, and is required for successful automatic self-pollinationin certain flowers in Arabidopsis thaliana.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号