首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   13篇
  2015年   1篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有65条查询结果,搜索用时 579 毫秒
1.
2 mutant mouse cells M10 and Q31 were examined for chromosomal aberrations induced by ultraviolet radiation (UV) and 4-nitroquinoline-1-oxide (4NQO), as compared with mouse lymphoma L5178Y cells. Q31 cells are UV- and 4NQO-sensitive cells isolated from L5178Y cells. M10 cells are similar but are sensitive to ionizing radiation and 4NQO. After treatment with UV or 4NQO, chromatid-type aberrations in these cell strains were induced more frequently in the first mitotic cells, at late fixation times. After UV exposure (2.4 J/m2), the maximal frequencies of chromatid-type breaks in Q31 cells were about 5 times higher than in L5178Y cells. In M10 cells such breaks were only as frequent as in L5178Y cells. After 4NQO treatment (50 ng/ml) the frequencies of chromatid-type breaks in M10 and Q31 cells were significantly higher than in L5178Y cells. From these results and those of previous studies (Takahashi et al., 1982), M10 cells may be considered hypersensitive to gamma-rays and 4NQO, but not to UV, and thus react similarly to L5178Y cells. The hypersensitivity of M10 cells to 4NQO may result from a defect in the ionizing-radiation repair mechanism as has been suggested to occur in ataxia telangiectasia (AT) cells. Q31 cells are hypersensitive to UV and 4NQO, but not to gamma-rays. Q31 cells may be considered to be deficient in a UV-like repair pathway. In conclusion, characteristics of murine M10 and Q31 cells are compared with those of human AT and xeroderma pigmentosum (XP) cells.  相似文献   
2.
3.
4.
A comparison has been made of dicentric yields in G0 lymphocytes between man and crab-eating monkey, Macaca fascicularis, after acute and chronic γ-irradiations. With acute irradiation (49.6 rad/min) there was no significant difference between them, but for the chronic irradiation (17.1 rad/h) a significant difference was observed between the species. When the dose-response relations were fitted to the linear-quadratic model (Y = αD + βD2), the species-difference observed for chronic irradiation was almost entirely due to change in the value of β. In addition, after chronic irradiation the β-value for monkey was almost negligible, but that for man was significant. Post-irradiation incubation experiment showed that cells with dicentrics were partly eliminated during the course of chronic irradiation, because there were appreciable reductions of dicentric yields (ca. 25% for both man and monkey at 400 rad) together with mitotic indices (ca. 30% and 60% for man and monkey, respectively, at 400 rad). Accordingly, it would be reasonable to postulate that G0 repair for dicentrics other than selection mechanism must play a major role in the effects of low dose rate. It can be further suggested that G0-repair capacity for chromosal damages leading to dicentrics may be different among different primate species.  相似文献   
5.
6.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.  相似文献   
7.
8.
9.
10.
Two large, stable populations (Texas and Japan) of Drosophila melanogaster were surveyed at 21 allozyme loci on the second and third chromosomes and for chromosomal gene arrangements on those two chromosomes. Over 220 independent gametes were sampled from each population. The types and frequencies of the surveyed genetic variation are similar to those observed previously and suggest only slight differentiation among geographically distant populations. Linkage disequilibrium among linked allozymes loci is only slightly, if at all, detectable with these sample sizes. Linkage disequilibrium between linked inversions and allozymes loci is common especially when located in the same arm. These disequilibria appear to be in the same direction for most comparisons in the two population samples. This result is interpreted as evidence of similar selective environments (ecological and genetic) in the two populations. It is also noted that the direction of these linkage disequilibria appears to be oriented with respect to the gene frequencies at the component loci.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号