首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   2篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   9篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有65条查询结果,搜索用时 171 毫秒
1.
2.
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30–300 µg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-κB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   
3.
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI +][PIN +] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI +], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI +]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN +]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI +], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN +]-independent pathway.  相似文献   
4.
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.  相似文献   
5.
Phage-displayed peptides that mimic aflatoxin B1 in serological reactivity   总被引:8,自引:0,他引:8  
AIMS: To test phage-displayed random peptide libraries as sources of peptides that mimic the binding of aflatoxin B1 to monoclonal antibodies raised against the toxin. METHODS AND RESULTS: For two of the three MAbs tested, clones were obtained by panning, producing phage that bound specifically to MAb 13D1-1D9 (MAb 24; specific for aflatoxins B1 and G1) and MAb 6E12-1E9 (MAb 13; specific for aflatoxins B1, G1 and B2) in ELISA. The amino acid sequences of the binding peptides varied. Those binding to MAb 24 contained the sequence of '...YMD...', and those that bound to MAb 13 contained the dipeptide 'PW'. Mimotope phage was used in a competition ELISA format for assaying aflatoxin concentrations. CONCLUSION: The results show that mimotope preparations are effective substitutes for pure toxin in these ELISA procedures. SIGNIFICANCE AND IMPACT OF THE STUDY: These results should contribute significantly to enhancing the safety and diminishing the costs of aflatoxin assays.  相似文献   
6.
Cell death plays a ubiquitous role in plant-microbe interactions, given that it is associated with both susceptible and resistance interactions. A class of cell death-inducing proteins, termed Nepl-like proteins (NLPs), has been reported in bacteria, fungi, and oomycetes. These proteins induce nonspecific necrosis in a variety of dicotyledonous plants. Here, we describe three members of the NLP family from the oomycete Phytophthora infestans (PiNPP1.1, PiNPP1.2, and PiNPP1.3). Using agroinfection with a binary Potato virus X vector, we showed that PiNPP1.1 induces cell death in Nicotiana benthamiana and the host plant tomato. Expression analyses indicated that PiNPP1.1 is up-regulated during late stages of infection of tomato by P. infestans. We compared PiNPP1.1 necrosis-inducing activity to INF1 elicitin, a well-studied protein that triggers the hypersensitive response in Nicotiana spp. Using virus-induced gene silencing, we showed that the cell death induced by PiNPP1.1 is dependent on the ubiquitin ligase-associated protein SGT1 and the heat-shock protein HSP90. In addition, cell death triggered by PiNPP1.1 but not that by INF1 was dependent on the defense-signaling proteins COI1, MEK2, NPR1, and TGA2.2, suggesting distinct signaling requirements. Combined expression of PiNPP1.1 and INF1 in N. benthamiana resulted in enhanced cell death, suggesting synergistic interplay between the two cell-death responses. Altogether, these results point to potentially distinct but interacting cell-death pathways induced by PiNPP1.1 and INF1 in plants.  相似文献   
7.
The nucleotide binding oligomerization domain-like receptor (NLR) family of pattern recognition molecules is involved in a diverse array of processes required for host immune responses against invading pathogens. Unlike TLRs that mediate extracellular recognition of microbes, several NLRs sense pathogens in the cytosol and upon activation induce host defense signaling pathways. Although TLRs and NLRs differ in their mode of pathogen recognition and function, they share similar domains for microbial sensing and cooperate to elicit immune responses against the pathogen. Genetic variation in several NLR genes is associated with the development of inflammatory disorders or increased susceptibility to microbial infection. Further understanding of NLRs should provide critical insight into the mechanisms of host defense and the pathogenesis of inflammatory diseases.  相似文献   
8.
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is an adaptor molecule that has recently been implicated in the activation of caspase-1. We have studied the role of ASC in the host defense against the intracellular pathogen Listeria monocytogenes. ASC was found to be essential for the secretion of IL-1beta/IL-18, but dispensable for IL-6, TNF-alpha, and IFN-beta production, in macrophages infected with Listeria. Activation of caspase-1 was abolished in ASC-deficient macrophages, whereas activation of NF-kappaB and p38 was unaffected. In contrast, secretion of IL-1beta, IL-6, and TNF-alpha was reduced in TLR2-deficient macrophages infected with Listeria; this was associated with impaired activation of NF-kappaB and p38, but normal caspase-1 processing. Analysis of Listeria mutants revealed that cytosolic invasion was required for ASC-dependent IL-1beta secretion, consistent with a critical role for cytosolic signaling in the activation of caspase-1. Secretion of IL-1beta in response to lipopeptide, a TLR2 agonist, was greatly reduced in ASC-null macrophages and was abolished in TLR2-deficient macrophages. These results demonstrate that TLR2 and ASC regulate the secretion of IL-1beta via distinct mechanisms in response to Listeria. ASC, but not TLR2, is required for caspase-1 activation independent of NF-kappaB in Listeria-infected macrophages.  相似文献   
9.
The bacterial surface protein flagellin is widely distributed and well conserved among distant bacterial species. We and other investigators have reported recently that purified flagellin from Salmonella dublin or recombinant flagellin of Salmonella muenchen origin binds to the eukaryotic toll receptor TLR5 and activates the nuclear translocation of NF-kappaB and mitogen-activated protein kinase, resulting in the release of a host of pro-inflammatory mediators in vitro and in vivo. The amino acid sequence alignment of flagellins from various Gram-negative bacteria shows that the C and N termini are well conserved. It is possible that sequences within the N and C termini or both may regulate the pro-inflammatory activity of flagellin. Here we set out to map more precisely the regions in both termini that are required for TLR5 activation and pro-inflammatory signaling. Systematic deletion of amino acids from either terminus progressively reduced eukaryotic pro-inflammatory activation. However, deletion of amino acids 95-108 (motif N) in the N terminus and 441-449 (motif C) in the C terminus abolished pro-inflammatory activity completely. Site-directed mutagenesis analysis provided further evidence for the importance of motifs N and C. We also present evidence for the functional role of motifs N and C with the TLR5 receptor using a reporter assay system. Taken together, our results demonstrate that the pro-inflammatory activity of flagellin results from the interaction of motif N with the TLR5 receptor on the cell surface.  相似文献   
10.
Innate immune cells rely on pathogen recognition receptors such as the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family to mount an appropriate immune response against microbial threats. The NLR protein Nlrp3 senses microbial ligands, endogenous danger signals and crystalline substances in the cytosol to trigger the assembly of a large caspase-1-activating protein complex termed the Nlrp3 inflammasome. Autoproteolytic maturation of caspase-1 zymogens in the Nlrp3 inflammasome leads to maturation and extracellular release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Gain-of-function mutations in the NOD domain of Nlrp3 are associated with auto-inflammatory disorders characterized by skin rashes and prolonged episodes of fever. In addition, decreased Nlrp3 expression was recently linked with susceptibility to Crohn's disease in humans. In this review, we discuss recent developments on the role of the Nlrp3 inflammasome in innate immunity, its activation mechanisms and the auto-inflammatory disorders associated with deregulation of Nlrp3 inflammasome activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号