首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Defenses induced by herbivore feeding or phytohormones such as methyl jasmonate (MeJA) can affect growth, reproduction, and herbivory, not only on the affected individual but also in its neighboring plants. Here, we report multiannual defense, growth, and reproductive responses of MeJA‐treated bilberry (Vaccinium myrtillus) and neighboring ramets. In a boreal forest in western Norway, we treated bilberry ramets with MeJA and water (control) and measured responses over three consecutive years. We observed the treatment effects on variables associated with herbivory, growth, and reproduction in the MeJA‐treated and untreated ramet and neighboring ramets distanced from 10 to 500 cm. MeJA‐treated ramets had fewer grazed leaves and browsed shoots compared to control, with higher effects in 2014 and 2015, respectively. In 2013, growth of control ramets was greater than MeJA‐treated ramets. However, MeJA‐treated ramets had more flowers and berries than control ramets 2 years after the treatment. The level of insect and mammalian herbivory was also lower in untreated neighboring ramets distanced 10–150 cm and, consistent with responses of MeJA‐treated ramets, the stronger effect was also one and 2 years delayed, respectively. The same neighboring ramets had fewer flowers and berries than untreated ramets, indicating a trade‐off between defense and reproduction. Although plant–plant effects were observed across all years, the strength varied by the distance between the MeJA‐treated ramets and its untreated neighbors. We document that induced defense in bilberry reduces both insect and mammalian herbivory, as well as growth, over multiple seasons. The defense responses occurred in a delayed manner with strongest effects one and 2 years after the induction. Additionally, our results indicate defense signaling between MeJA‐treated ramets and untreated neighbors. In summary, this study shows that induced defenses are important ecological strategies not only for the induced individual plant but also for neighboring plants across multiple years in boreal forests.  相似文献   
2.
Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block‐design in a pine‐bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry (Vaccinium myrtillus) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA‐treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf‐chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.  相似文献   
3.
Wild ungulates are key determinants in shaping boreal plant communities, and may also affect ecosystem function through inducing the plant defence systems of key plant species. We examined whether winter browsing by deer could increase the resistance of bilberry (Vaccinium myrtillus). We used three indicators of induced bilberry defence: reduced growth (a), reduced reproduction (b) and decreased insect herbivory (c) in focal plants. In a field experiment, using a randomised block design, we exposed half of plants twice in winter to exogenously applied methyl jasmonate (MeJA) and crossed this factor with randomly selecting browsed and unbrowsed plants. We predicted that MeJA-plants would have significant lower growth, reproduction and insect herbivory than Control plants. We also expected that Browsed plants would experience similar negative effects and that there would be an interaction between MeJa and Browsed indicating a possible additive effect. Growth, flowering and insect herbivory were significantly lower in MeJA than in Control, as expected. We did not find the same reduction for Browsed and no significant interaction between factors. The combined treatment, unexpectedly, flowered more and showed higher levels of insect herbivory than MeJA. Our study showed that defence responses of bilberry may be induced by exogenously-applied MeJA in winter. Our study could not confirm whether winter browsing by deer can induce the same defence responses.  相似文献   
4.
Plants have the capacity to alter their phenotype in response to environmental factors, such as herbivory, a phenomenon called phenotypic plasticity. However, little is known on how plant responses to herbivory are modulated by environmental variation along ecological gradients. To investigate this question, we used bilberry (Vaccinium myrtillus L.) plants and an experimental treatment to induce plant defenses (i.e., application of methyl jasmonate; MeJA), to observe ecological responses and gene expression changes along an elevational gradient in a boreal system in western Norway. The gradient included optimal growing conditions for bilberry in this region (ca. 500 m a.s.l.), and the plant's range limits at high (ca. 900 m a.s.l.) and low (100 m a.s.l.) elevations. Across all altitudinal sites, MeJA‐treated plants allocated more resources to herbivory resistance while reducing growth and reproduction than control plants, but this response was more pronounced at the lowest elevation. High‐elevation plants growing under less herbivory pressure but more resource‐limiting conditions exhibited consistently high expression levels of defense genes in both MeJA‐treated and untreated plants at all times, suggesting a constant state of “alert.” These results suggest that plant defense responses at both the molecular and ecological levels are modulated by the combination of climate and herbivory pressure, such that plants under different environmental conditions differentially direct the resources available to specific antiherbivore strategies. Our findings are important for understanding the complex impact of future climate changes on plant–herbivore interactions, as this is a major driver of ecosystem functioning and biodiversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号