首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   64篇
  国内免费   1篇
  2021年   4篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   16篇
  2012年   32篇
  2011年   38篇
  2010年   20篇
  2009年   8篇
  2008年   31篇
  2007年   25篇
  2006年   26篇
  2005年   29篇
  2004年   21篇
  2003年   22篇
  2002年   36篇
  2001年   4篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1978年   4篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
  1971年   4篇
  1966年   3篇
  1965年   4篇
排序方式: 共有556条查询结果,搜索用时 609 毫秒
1.
2.
臭参中挥发性臭味的化学成分   总被引:3,自引:0,他引:3  
臭参(Codonopsis sp.)俗称臭药、云南参、臭党参等,系桔梗科党参属云南特有植物种,种名待分类学家鉴定。其根具有特殊臭味,民间作为廉价滋补佳品,和肉、蛋一起煮食,具有补中益气,生津之功效。同属许多植物如党参(C.pilosula Nannf)、川党参(C.tangshan Oliv.)等的根,均为著名中药,但都没有臭参那种臭味。该植物的化学成分未见报道。为了解臭参植物的药用价值以及同党参、川党参等的相互关系,我们首先对臭参的挥发性臭味化学成分作了气相色谱-质谱法分析,现将结果简要报告如下。  相似文献   
3.
Summary A mathematical theory for computing the probabilities of various nucleotide configurations among related species is developed, and the probability of obtaining the correct tree (topology) from nucleotide sequence data is evaluated using models of evolutionary trees that are close to the tree of mitochondrial DNAs from human, chimpanzee, gorilla, orangutan, and gibbon. Special attention is given to the number of nucleotides required to resolve the branching order among the three most closely related organisms (human, chimpanzee, and gorilla). If the extent of DNA divergence is close to that obtained by Brown et al. for mitochondrial DNA and if sequence data are available only for the three most closely related organisms, the number of nucleotides (m*) required to obtain the correct tree with a probability of 95% is about 4700. If sequence data for two outgroup species (orangutan and gibbon) are available, m* becomes about 2600–2700 when the transformed distance, distance-Wagner, maximum parsimony, or compatibility method is used. In the unweighted pair-group method, m* is not affected by the availability of data from outgroup species. When these five different tree-making methods, as well as Fitch and Margoliash's method, are applied to the mitochondrial DNA data (1834 bp) obtained by Brown et al. and by Hixson and Brown, they all give the same phylogenetic tree, in which human and chimpanzee are most closely related. However, the trees considered here are gene trees, and to obtain the correct species tree, sequence data for several independent loci must be used.  相似文献   
4.
A mathematical theory is developed for computing the probability that m genes sampled from one population (species) and n genes sampled from another are derived from l genes that existed at the time of population splitting. The expected time of divergence between the two most closely related genes sampled from two different populations and the time of divergence (coalescence) of all genes sampled are studied by using this theory. It is shown that the time of divergence between the two most closely related genes can be used as an approximate estimate of the time of population splitting (T) only when T identical to t/(2N) is small, where t and N are the number of generations and the effective population size, respectively. The variance of Nei and Li's estimate (d) of the number of net nucleotide differences between two populations is also studied. It is shown that the standard error (Sd) of d is larger than the mean when T is small (T much less than 1). In this case, Sd is reduced considerably by increasing sample size. When T is large (T greater than 1), however, a large proportion of the variance of d is caused by stochastic factors, and increase in the sample size does not help to reduce Sd. To reduce the stochastic variance of d, one must use data from many independent unlinked gene loci.  相似文献   
5.
Statistical methods for computing the standard errors of the branching points of an evolutionary tree are developed. These methods are for the unweighted pair-group method-determined (UPGMA) trees reconstructed from molecular data such as amino acid sequences, nucleotide sequences, restriction-sites data, and electrophoretic distances. They were applied to data for the human, chimpanzee, gorilla, orangutan, and gibbon species. Among the four different sets of data used, DNA sequences for an 895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data suggested that the chimpanzee is the closest and that the gorilla is the next closest to the human species. The orangutan and gibbon are more distantly related to man than is the gorilla. This topology of the tree is in agreement with that for the tree obtained from chromosomal studies and DNA-hybridization experiments. However, the difference between the branching point for the human and the chimpanzee species and that for the gorilla species and the human-chimpanzee group is not statistically significant. In addition to this analysis, various factors that affect the accuracy of an estimated tree are discussed.   相似文献   
6.
Models of Evolution of Reproductive Isolation   总被引:12,自引:3,他引:9  
Masatoshi Nei  Takeo Maruyama    Chung-I Wu 《Genetics》1983,103(3):557-579
Mathematical models are presented for the evolution of postmating and premating reproductive isolation. In the case of postmating isolation it is assumed that hybrid sterility or inviability is caused by incompatibility of alleles at one or two loci, and evolution of reproductive isolation occurs by random fixation of different incompatibility alleles in different populations. Mutations are assumed to occur following either the stepwise mutation model or the infinite-allele model. Computer simulations by using It?'s stochastic differential equations have shown that in the model used the reproductive isolation mechanism evolves faster in small populations than in large populations when the mutation rate remains the same. In populations of a given size it evolves faster when the number of loci involved is large than when this is small. In general, however, evolution of isolation mechanisms is a very slow process, and it would take thousands to millions of generations if the mutation rate is of the order of 10(-5) per generation. Since gene substitution occurs as a stochastic process, the time required for the establishment of reproductive isolation has a large variance. Although the average time of evolution of isolation mechanisms is very long, substitution of incompatibility genes in a population occurs rather quickly once it starts. The intrapopulational fertility or viability is always very high. In the model of premating isolation it is assumed that mating preference or compatibility is determined by male- and female-limited characters, each of which is controlled by a single locus with multiple alleles, and mating occurs only when the male and female characters are compatible with each other. Computer simulations have shown that the dynamics of evolution of premating isolation mechanism is very similar to that of postmating isolation mechanism, and the mean and variance of the time required for establishment of premating isolation are very large. Theoretical predictions obtained from the present study about the speed of evolution of reproductive isolation are consistent with empirical data available from vertebrate organisms.  相似文献   
7.
8.
Effect of Linkage on the Genetic Load Manifested under Inbreeding   总被引:1,自引:0,他引:1       下载免费PDF全文
Masatoshi Nei 《Genetics》1965,51(4):679-688
  相似文献   
9.
10.
内蒙古自治区目前共知螽亚目昆虫5科、26属、58种(表1)。其中螽斯占总种数的74.2%,蟋蟀占17.3%,其余的占7.5%。其区系组成以古北种为主体,特别是东北中国种、东西伯利亚——蒙古种和欧洲——西伯利亚种是区系组成的核心(表2)。特有种占有一定的比例(10.3%),主要分布于该区东北部的森林草原亚带和西部的荒漠带。中部地区有部分华北种的渗入。在本区东部的草原带中,螽斯亚科昆虫最为丰富;西部的荒漠带中,硕螽亚科昆虫是最突出的代表种,并有中亚种的分布(表4)。从总的种类分布来看,东北部的森林带和草原带的昆虫种类明显比西部荒漠带要丰富,中部的干草原亚带则是上述两者的过渡区域。 文中还根据螽亚目昆虫在不同植被地区的分布情况,采用Sφgrensen系数比较了各地带之间昆虫区系的相似性(表3)。用聚类分析的方法将10个植被地带或亚带划分成6个大的地带区:森林区、草原区、荒漠区、暖温型森林草原区、暖温型典型草原区和暖温型荒漠草原区(图2)。作者详细地叙述了各个地带区中昆虫区系的组成特点和分布规律。并就前人对该区昆虫区划工作提出了若干修订意见。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号