首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   
3.
Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole‐plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) 13C content in soluble sugars; (2) 18O enrichment in leaf water; (3) leaf‐level gas exchange; and (4) whole‐plant biomass accumulation and water use. Whole‐plant and intrinsic leaf TE and 13C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole‐plant TE. It increased intrinsic leaf‐level TE due to a decline in stomatal conductance. It also promoted higher 18O enrichment in leaf water. VPD had no genotype‐specific effect. We detected a deviation in the relationship between 13C in leaf sugars and 13C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf‐level 13C discrimination was a powerful predictor of the genetic variability of whole‐plant TE irrespective of VPD during growth.  相似文献   
4.
13C discrimination between atmosphere and bulk leaf matter (Δ13Clb) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole‐plant TE (i.e. accumulated biomass/water transpired). Net CO2 assimilation rates (A) and stomatal conductance (gs) were recorded in parallel to: (1) 13C in leaf bulk material (δ13Clb) and in soluble sugars (δ13Css) and (2) 18O in leaf water and bulk leaf material. Genotypic means of δ13Clb and δ13Css were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/gs), and with whole‐plant TE. Finally, gs was positively correlated to 18O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ13Clb captures efficiently the genetic variability of whole‐plant TE in poplar. Nevertheless, scaling from leaf level to whole‐plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented.  相似文献   
5.
Ozone induces stomatal sluggishness, which impacts photosynthesis and transpiration. Stomatal responses to variation of environmental parameters are slowed and reduced by ozone and may be linked to difference of ozone sensitivity. Here we determine the ozone effects on stomatal conductance of each leaf surface. Potential causes of this sluggish movement, such as ultrastructural or ionic fluxes modification, were studied independently on both leaf surfaces of three Euramerican poplar genotypes differing in ozone sensitivity and in stomatal behaviour. The element contents in guard cells were linked to the gene expression of ion channels and transporters involved in stomatal movements, directly in microdissected stomata. In response to ozone, we found a decrease in the stomatal conductance of the leaf adaxial surface correlated with high calcium content in guard cells compared with a slight decrease on the abaxial surface. No ultrastructural modifications of stomata were shown except an increase in the number of mitochondria. The expression of vacuolar H+/Ca2+‐antiports (CAX1 and CAX3 homologs), β‐carbonic anhydrases (βCA1 and βCA4) and proton H+‐ATPase (AHA11) genes was strongly decreased under ozone treatment. The sensitive genotype characterized by constitutive slow stomatal response was also characterized by constitutive low expression of genes encoding vacuolar H+/Ca2+‐antiports.  相似文献   
6.
Oxidative stress caused by ozone (O3) affects plant development, but the roles of specific redox‐homeostatic enzymes in O3 responses are still unclear. While growth day length may affect oxidative stress outcomes, the potential influence of day length context on equal‐time exposures to O3 is not known. In Arabidopsis Col‐0, day length affected the outcome of O3 exposure. In short‐days (SD), few lesions were elicited by treatments that caused extensive lesions in long days (LD). Lesion formation was not associated with significant perturbation of glutathione, ascorbate, NADP(H) or NAD(H). To investigate roles of two genes potentially underpinning this redox stability, O3 responses of mutants for cytosolic NADP‐isocitrate dehydrogenase (icdh) and glutathione reductase 1 (gr1) were analysed. Loss of ICDH function did not affect O3‐induced lesions, but slightly increased glutathione oxidation, induction of other cytosolic NADPH‐producing enzymes and pathogenesis‐related gene 1 (PR1). In gr1, O3‐triggered lesions, salicylic acid accumulation, and induction of PR1 were all decreased relative to Col‐0 despite enhanced accumulation of glutathione. Thus, even at identical irradiance and equal‐time exposures, day length strongly influences phenotypes triggered by oxidants of atmospheric origin, while in addition to its antioxidant function, the GR‐glutathione system seems to play novel signalling roles during O3 exposure.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号