首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2020年   1篇
  2014年   3篇
  2012年   2篇
  2011年   2篇
排序方式: 共有8条查询结果,搜索用时 152 毫秒
1
1.
In this study, we report a whole-genome single nucleotide polymorphism (SNP)-based evolutionary approach to study the epidemiology of a multistate outbreak of Salmonella enterica subsp. enterica serovar Montevideo. This outbreak included 272 cases that occurred in 44 states between July 2009 and April 2010. A case-control study linked the consumption of salami made with contaminated black and red pepper to the outbreak. We sequenced, on the SOLiD System, 47 isolates with XbaI PFGE pattern JIXX01.0011, a common pulsed-field gel electrophoresis (PFGE) pattern associated with isolates from the outbreak. These isolates represented 20 isolates collected from human sources during the period of the outbreak and 27 control isolates collected from human, food, animal, and environmental sources before the outbreak. Based on 253 high-confidence SNPs, we were able to reconstruct a tip-dated molecular clock phylogeny of the isolates and to assign four human isolates to the actual outbreak. We developed an SNP typing assay to rapidly discriminate between outbreak-related cases and non-outbreak-related cases and tested this assay on an extended panel of 112 isolates. These results suggest that only a very small percentage of the human isolates with the outbreak PFGE pattern and obtained during the outbreak period could be attributed to the actual pepper-related outbreak (20%), while the majority (80%) of the putative cases represented background cases. This study demonstrates that next-generation-based SNP typing provides the resolution and accuracy needed for outbreak investigations of food-borne pathogens that cannot be distinguished by currently used subtyping methods.  相似文献   
2.

Background

Within the last decade, Salmonella enterica subsp. enterica serovar Cerro (S. Cerro) has become one of the most common serovars isolated from cattle and dairy farm environments in the northeastern US. The fact that this serovar is commonly isolated from subclinically infected cattle and is rarely associated with human disease, despite its frequent isolation from cattle, has led to the hypothesis that this emerging serovar may be characterized by reduced virulence. We applied comparative and population genomic approaches to (i) characterize the evolution of this recently emerged serovar and to (ii) gain a better understanding of genomic features that could explain some of the unique epidemiological features associated with this serovar.

Results

In addition to generating a de novo draft genome for one Salmonella Cerro strain, we also generated whole genome sequence data for 26 additional S. Cerro isolates, including 16 from cattle operations in New York (NY) state, 2 from human clinical cases from NY in 2008, and 8 from diverse animal sources (7 from Washington state and 1 from Florida). All isolates sequenced in this study represent sequence type ST367. Population genomic analysis showed that isolates from the NY cattle operations form a well-supported clade within S. Cerro ST367 (designated here “NY bovine clade”), distinct from isolates from Washington state, Florida and the human clinical cases. A molecular clock analysis indicates that the most recent common ancestor of the NY bovine clade dates back to 1998, supporting the recent emergence of this clone.Comparative genomic analyses revealed several relevant genomic features of S. Cerro ST367, that may be responsible for reduced virulence of S. Cerro, including an insertion creating a premature stop codon in sopA. In addition, patterns of gene deletion in S. Cerro ST367 further support adaptation of this clone to a unique ecological or host related niche.

Conclusions

Our results indicate that the increase in prevalence of S. Cerro ST367 is caused by a highly clonal subpopulation and that S. Cerro ST367 is characterized by unique genomic deletions that may indicate adaptation to specific ecological niches and possibly reduced virulence in some hosts.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-427) contains supplementary material, which is available to authorized users.  相似文献   
3.
Human head lice are blood-sucking insects causing an infestation in humans called pediculosis capitis. The infestation is more prevalent in the school-aged population. Scalp itching, a common presenting symptom, results in scratching and sleep disturbance. The condition can lead to social stigmatization which can lead to loss of self-esteem. Currently, the mainstay of treatment for pediculosis is chemical insecticides such as permethrin. The extended use of permethrin worldwide leads to growing pediculicide resistance. The aim of this study is to demonstrate the presence of the knockdown resistance (kdr) mutation in head lice populations from six different localities of Thailand. A total of 260 head lice samples in this study were collected from 15 provinces in the 6 regions of Thailand. Polymerase chain reaction (PCR) was used to amplify the α subunit of voltage-sensitive sodium channel (VSSC) gene, kdr mutation (C→T substitution). Restriction fragment length polymorphism (RFLP) patterns and sequencing were used to identify the kdr T917I mutation and demonstrated three genotypic forms including homozygous susceptible (SS), heterozygous genotype (RS), and homozygous resistant (RR). Of 260 samples from this study, 156 (60.00%) were SS, 58 (22.31%) were RS, and 46 (17.69%) were RR. The overall frequency of the kdr T917I mutation was 0.31. Genotypes frequencies determination using the exact test of Hardy-Weinberg equilibrium found that northern, central, northeastern, southern, and western region of Thailand differed from expectation. The five aforementioned localities had positive inbreeding coefficient value (Fis > 0) which indicated an excess of homozygotes. The nucleotide and amino acid sequences of RS and RR showed T917I and L920F point mutations. In conclusion, this is the first study detecting permethrin resistance among human head lice from Thailand. PCR-RFLP is an easy technique to demonstrate the kdr mutation in head louse. The data obtained from this study would increase awareness of increasing of the kdr mutation in head louse in Thailand.  相似文献   
4.
5.
The genetic diversity represented by >2,500 different Salmonella serovars provides a yet largely uncharacterized reservoir of mobile elements that can contribute to the frequent emergence of new pathogenic strains of this important zoonotic pathogen. Currently, our understanding of Salmonella mobile elements is skewed by the fact that most studies have focused on highly virulent or common serovars. To gain a more global picture of mobile elements in Salmonella, we used prediction algorithms to screen for mobile elements in 16 sequenced Salmonella genomes representing serovars for which no prior genome scale mobile element data were available. From these results, selected mobile elements underwent further analyses in the form of validation studies, comparative analyses, and PCR-based population screens. Through this analysis we identified a novel plasmid that has two cointegrated replicons (IncI1-IncFIB); this plasmid type was found in four genomes representing different Salmonella serovars and contained a virulence gene array that had not been previously identified. A Salmonella Montevideo isolate contained an IncHI and an IncN2 plasmid, which both encoded antimicrobial resistance genes. We also identified two novel genomic islands (SGI2 and SGI3), and 42 prophages with mosaic architecture, seven of them harboring known virulence genes. Finally, we identified a novel integrative conjugative element (ICE) encoding a type IVb pilus operon in three non-typhoidal Salmonella serovars. Our analyses not only identified a considerable number of mobile elements that have not been previously reported in Salmonella, but also found evidence that these elements facilitate transfer of genes that were previously thought to be limited in their distribution among Salmonella serovars. The abundance of mobile elements encoding pathogenic properties may facilitate the emergence of strains with novel combinations of pathogenic traits.  相似文献   
6.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   
7.
The persistence of Listeria monocytogenes in food-associated environments represents a key factor in transmission of this pathogen. To identify persistent and transient strains associated with production of fermented meat sausages in northern Portugal, 1,723 L. monocytogenes isolates from raw material and finished products from 11 processors were initially characterized by random amplification of polymorphic DNA (RAPD), PCR-based molecular serotyping, and epidemic clone characterization, as well as cadmium, arsenic, and tetracycline resistance typing. Pulsed-field gel electrophoresis (PFGE) typing of 240 representative isolates provided evidence for persistence of L. monocytogenes for periods of time ranging from 10 to 32 months for all seven processors for which isolates from different production dates were available. Among 50 L. monocytogenes isolates that included one representative for each PFGE pattern obtained from a given sample, 12 isolates showed reduced invasion efficiency in Caco-2 cells, including 8 isolates with premature stop codons in inlA. Among 41 isolates representing sporadic and persistent PFGE types, 22 isolates represented lysogens. Neither strains with reduced invasion nor lysogens were overrepresented among persistent isolates. While the susceptibility of isolates to lysogenic phages also did not correlate with persistence, it appeared to be associated with molecular serotype. Our data show the following. (i) RAPD may not be suitable for analysis of large sets of L. monocytogenes isolates. (ii) While a large diversity of L. monocytogenes subtypes is found in Portuguese fermented meat sausages, persistence of L. monocytogenes in this food chain is common. (iii) Persistent L. monocytogenes strains are diverse and do not appear to be characterized by unique genetic or phenotypic characteristics.  相似文献   
8.
The genus Listeria is ubiquitous in the environment and includes the globally important food-borne pathogen Listeria monocytogenes. While the genomic diversity of Listeria has been well studied, considerably less is known about the genomic and morphological diversity of Listeria bacteriophages. In this study, we sequenced and analyzed the genomes of 14 Listeria phages isolated mostly from New York dairy farm environments as well as one related Enterococcus faecalis phage to obtain information on genome characteristics and diversity. We also examined 12 of the phages by electron microscopy to characterize their morphology. These Listeria phages, based on gene orthology and morphology, together with previously sequenced Listeria phages could be classified into five orthoclusters, including one novel orthocluster. One orthocluster (orthocluster I) consists of large-genome (∼135-kb) myoviruses belonging to the genus “Twort-like viruses,” three orthoclusters (orthoclusters II to IV) contain small-genome (36- to 43-kb) siphoviruses with icosahedral heads, and the novel orthocluster V contains medium-sized-genome (∼66-kb) siphoviruses with elongated heads. A novel orthocluster (orthocluster VI) of E. faecalis phages, with medium-sized genomes (∼56 kb), was identified, which grouped together and shares morphological features with the novel Listeria phage orthocluster V. This new group of phages (i.e., orthoclusters V and VI) is composed of putative lytic phages that may prove to be useful in phage-based applications for biocontrol, detection, and therapeutic purposes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号