首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   24篇
  2021年   1篇
  2020年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   9篇
  2011年   7篇
  2010年   1篇
  2009年   2篇
  2008年   9篇
  2007年   11篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
Chemical and enzymatic biotin-labeling of oligodeoxyribonucleotides.   总被引:24,自引:19,他引:5       下载免费PDF全文
Biotin has been converted to 2-(biotinylamido)ethanol and condensed to phosphorylated oligonucleotides in a solid phase synthesis. The 5'-biotinylated oligonucleotides were enzymatically coupled to other DNA fragments by T4 DNA ligase or T4 RNA ligase. The hybridization properties of such biotin-labeled oligonucleotide probes were studied.  相似文献   
2.
cis-trans isomers of lycopene and beta-carotene in human serum and tissues.   总被引:6,自引:0,他引:6  
Since cis or trans isomers of carotenoids may have different biological reactivities, the isomeric composition of lycopene and beta-carotene was measured in serum and seven human tissues. In addition to all-trans lycopene, at least three cis-isomers (9-, 13-, and 15-cis) were present, accounting for more than 50% of total lycopene. 13- and 15-cis-beta-carotene, however, were present at only 5% of the all-trans isomer. In addition, 9-cis-beta-carotene was present in tissue samples but not in serum. There were interindividual differences in carotenoid levels of the different tissue types, but liver, adrenal gland, and testes always contained significantly higher amounts of the carotenoids than kidney, ovary, and fat; carotenoids in brain stem tissue were below the detection limit. beta-Carotene was the major carotenoid in liver, adrenal gland, kidney, ovary, and fat, whereas lycopene was the predominant carotenoid in testes.  相似文献   
3.
A progressive paresis was encountered in herds of Swedish goats. The symptoms developed during a period of weeks or months, and were initially often seen as a weakness of the hind limbs before the animals became paralytic. The development and the histopathological lesions of the disease in the GNS and the lungs were similar to those of visna in sheep. In vitro grown choroid plexus cells, prepared from affected goats, showed foci of polykaryocytes. Electron microscopy revealed the presence of particles morphologically similar to those of sheep visna virus (SVV). Goats experimentally infected with the goat visna virus (GVV) developed GNS lesions similar to those of visna in sheep and became seropositive to SVV. The results of complement fixation tests, carried out on sera from 11 goat herds, showed a coincidence between seropositiveness and the occurrence of disease in one and the same herd. Using the ELISA method, an average of 80 % of the goats in 5 herds were found to be seropositive to GVV.  相似文献   
4.
The endosomal sorting complexes required for transport (ESCRT) pathway mediates membrane fission reactions during intraluminal endosomal vesicle formation, budding of HIV-1 and other enveloped viruses, and the final abscission step of cytokinesis in mammals and archaea. Current models hold that ubiquitin-binding ESCRT factors act early in the pathway to regulate factor recruitment and assembly, whereas the late acting ESCRT-III proteins form filaments that draw the membranes together and mediate fission, possibly, in collaboration with VPS4-ATPases. I will discuss our current understanding of the structures and functions of the different ESCRT factors in HIV budding and abscission with a particular focus on our studies aimed at understanding: (1) how ubiquitin regulates ESCRT recruitment during HIV-1 budding and (2) the structures and membrane-binding properties of ESCRT-III subunits and filaments.  相似文献   
5.
While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology.  相似文献   
6.
7.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   
8.
The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CAN) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CAN and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N′-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.  相似文献   
9.
The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.  相似文献   
10.

Background

Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NCGag protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements.

Methodology/Principal Findings

We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding.

Conclusions/Significance

Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号