首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  2020年   1篇
  2016年   5篇
  2015年   4篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
2.

Background  

Parkinson's disease (PD) is the second most common neurodegenerative disorder. As there is no definitive diagnostic test, its diagnosis is based on clinical criteria. Recently transcranial duplex scanning (TCD) of the substantia nigra in the brainstem has been proposed as an instrument to diagnose PD. We and others have found that TCD scanning of substantia nigra duplex is a relatively accurate diagnostic instrument in patients with parkinsonian symptoms. However, all studies on TCD so far have involved well-defined, later-stage PD patients, which will obviously lead to an overestimate of the diagnostic accuracy of TCD.  相似文献   
3.
Abstract. Woodland colonization on wetlands is considered to have a detrimental effect on their ecological value, even though detailed analysis of this process is lacking. This paper provides an evaluation of the ecological changes resulting from succession of poor fen (base‐poor mire) to willow wet woodland on Goss Moor NNR in Cornwall, UK. Different ages of willow carr were associated with eight understorey communities. During willow colonization, in the ground flora, there was a progressive decrease in poor fen species and an associated increase in woodland species, which appeared to be related to an increase in canopy cover and therefore shade. The most diverse community was found to be the most recent willow and was dominated by poor fen species. The oldest willow was the second most diverse and was associated with a reduction in poor fen species and an increase in woodland species. Architectural features were used successfully to assess the general condition and structure of willow. Tree height and DBH were identified as useful parameters to accurately assess willow age in the field. The implications of active intervention to remove willow in order to conserve the full range of communities within the hydrosere are discussed.  相似文献   
4.
5.
Multi-colour brightfield in situ hybridisation on tissue sections   总被引:1,自引:1,他引:0  
 We describe the brightfield microscopical detection of multiple DNA target sequences in cell and tissue preparations. For this purpose, chromosome-specific DNA probes labelled with biotin, digoxigenin or fluorescein were simultaneously hybridised and detected by enzyme cytochemistry using two horseradish peroxidase (PO) reactions and one alkaline phosphatase (APase) reaction. For triple-colour detection on single cell preparations, the combination of the enzyme precipitates PO/diaminobenzidine (DAB, brown colour), APase/fast red (FR, red colour) and PO/tetramethylbenzidine (TMB, green colour) resulted in an accurate detection of DNA targets. Embedding of the preparations in a thin cross-linked protein layer further stabilised the enzyme reaction products. For in situ hybridisation on tissue sections, however, this detection procedure showed some limitations with respect to both the stability of the APase/FR and PO/TMB precipitates, and the sequence of immunochemical layers in multiple-target procedures. For this reason, the APase/FR reaction was replaced by the APase/new fuchsin (NF, red colour) reaction and the washing steps after the PO/TMB reaction were restricted to the use of phosphate buffer pH 6.0. Furthermore, to improve the efficiency of the ISH reaction, APase/NF was applied in an avidin-biotin complex detection system and, to avoid target shielding in the triple-target ISH, the third primary antibody was applied prior to the second enzyme cytochemical reaction. These adaptations resulted in stable, well contrasting brown, red and green coloured precipitates. After quick haematoxylin counterstaining, the tissue preparations were directly mounted in phosphate buffer and, optionally, embedded in the cross-linked protein layer. Accepted: 27 June 1997  相似文献   
6.
We describe the application of lamin immunocytochemistry (ICC) and single- or double-target fluorescence in situ hybridization (FISH) on 4 microm thick frozen tissue sections as a method to facilitate scoring of aberrant chromosome copy numbers in colonic tumors. Analysis of FISH signals in colon tissue sections is often hampered by overlap and truncation of epithelial nuclei, due to the density of the epithelial cells. Furthermore, on the basis of nuclear staining it is often difficult to determine whether or not nuclei are overlapping, or adjoining. Therefore, reliable evaluation of (F)ISH signals to screen for genomic changes was until now mainly restricted to isolated nuclei obtained from relatively thick tissue sections. In this study the applicability of lamin ICC, to stain the nuclear periphery and to distinguish individual nuclei, combined with the FISH procedure is explored to solve this problem for colon epithelium. For ICC we applied the alkaline phosphatase (APase)-Fast Red detection method, since the fluorescent precipitate of this reaction resists extensive proteolytic digestion as needed for efficient FISH on tissue sections. Chromosome copy numbers could easily be determined in 4 microm thick frozen tissue sections by combining lamin ICC and FISH. The ratio of the copy numbers of the chromosomes 7 and 17 could be determined in frozen tissue sections after combined lamin ICC and double-target FISH. It is concluded that the combination of lamin ICC and FISH improves chromosome copy number analysis and can be used to investigate genomic changes in different tumor compartments in thin frozen tissue sections.  相似文献   
7.
We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label.  相似文献   
8.
9.
In situ hybridization (ISH) is a powerful technique for localizing specific nucleic acid sequences (DNA, RNA) in microscopic preparations of tissues, cells, chromosomes, and linear DNA fibers. To date, a wide variety of research and diagnostic applications of ISH have been described, making the technique an integral part of studies concerning gene mapping, gene expression, RNA processing and transport, the three-dimensional organization of the nucleus, tumor genetics, microbial infections, and prenatal diagnosis. In this review, I first describe the ISH procedure in short and then focus on the currently available non-radioactive probe-labeling and cytochemical detection methodologies that are utilized to visualize one or multiple different nucleic acid targets in situ with different colors. Special emphasis is placed on the procedures applying fluorescence and brightfield microscopy, the simultaneous detection of nucleic acids and proteins by combined ISH and immunocytochemistry, and, in addition, on the recent progress that has been made with the introduction of signal amplification procedures to increase the detection sensitivity of ISH. Finally, a comparison of fluorescence, enzyme cytochemical, and colloidal gold silver probe detection systems will be presented, and possible future directions of in situ nucleic acid detection will be discussed. Accepted: 9 June 1999  相似文献   
10.
A fast method for identifying several chromosomes with chromosome-specific oligonucleotide primers directing an in situ labeling reaction is described. Up to three reactions distinguished by different fluorochromes (fluorescein isothiocyanate, rhodamine/Texas red, p-aminomethyl-cyclohexane carboxylic acid) can currently be performed. Prospects for increasing this up to seven colors, and for the future of the process in prenatal diagnosis are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号