首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1982年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
During the larval period, most teleost fishes undergo a dramatic change in body form. Most functional systems are incomplete at hatching. Rapid development of swimming, feeding and respiration systems are expected. In this study, growth patterns of morphological characteristics related to these three functions were studied in two species of Ostariophysian teleosts: African catfish Clarias gariepinus and common carp Cyprinus carpio . Special attention was paid to the larval finfold, which is a remarkably common feature of fish larvae. The results confirmed that larval growth shows different phases. Many morphological characters showed fast allometric growth in early larvae, followed by isometric growth after an inflexion point. In carp, all larval growth curves showed such inflexion points at a total length of about 7 mm while in Clarias such a coupling was not found. The inflexion points in carp occur at a stage during which the typical larval swimming style changes towards the adult swimming style.  相似文献   
2.
For measurement of viscoelastic properties of monolayer-covered interfaces a longitudinal wave is generated in the plane of the interface, using a horizontal oscillating barrier. The wave propagation depends on the values of the viscoelastic parameters of the monolayer. The technique is applied here to study the surface elasticity of layers consisting of lipids extracted from nerve membranes. It is concluded that mechanical disturbances are propagated as longitudinal waves. The possibility that longitudinal waves occur in nerve membranes and the role they might play in the transmission of information in biological membranes is discussed.  相似文献   
3.

Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological and structural information. In the present study, we have measured the circular polarizance of several multicellular green, red, and brown algae and higher plants, which show large variations in circular spectropolarimetric signals with differences in both spectral shape and magnitude. Many of the algae display spectral characteristics not previously reported, indicating a larger variation in molecular organization than previously assumed. As the strengths of these signals vary by three orders of magnitude, these results also have important implications in terms of detectability for the use of circular polarization as a signature of life.

  相似文献   
4.
Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650?nm to 710?nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.  相似文献   
5.
Comparative Microhabitat Use of Ecologically Similar Benthic Fishes   总被引:1,自引:0,他引:1  
Although benthic insectivorous fishes such as darters and sculpins represent a significant component of riffle communities, few studies have compared the habitat use of these non-related but ecologically similar fishes. The objectives of this study were to examine the habitat use of Etheostoma olmstedi (tessellated darter) compared to Cottus bairdi (mottled sculpin) in Nescopeck Creek and Cottus cognatus (slimy sculpin) in Jack's Creek, Pennsylvania through underwater observation. Etheostoma olmstedi occupied habitats with significantly deeper waters than those available, whereas adult and young of the year Cottus occupied habitats with significantly faster water velocities than those available. Canonical discriminant analysis revealed microhabitat partitioning between E. olmstedi and each Cottus species. Cottus bairdi and C. cognatus occupied significantly shallower habitats with faster water velocities than E. olmstedi. Sculpin species were observed most frequently under substrate whereas E. olmstedi occurred most frequently on the top surface of the substrate. Hurlbert's standardized niche breadth values indicated that C. bairdi and C. cognatus were habitat specialists with regard to water velocity measures, but exhibited generalistic patterns of depth and substrate size use. Etheostoma olmstedi was a habitat specialist with respect to depth, but exhibited generalistic patterns of resource use for substrate size. Differential habitat use by these benthic fishes is consistent with the hypothesis that resource partitioning facilitates species coexistence among stream fishes.  相似文献   
6.
The chimaeroid holocephalian fishes are distinguished among extant chondrichthyans by the possession of three pairs of tooth plates, evergrowing and partially hypermineralized, that are not shed and replaced like the teeth of living elasmobranchs. Although derivation of the chimaeroid tooth plate from the fusion of members of a plesiomorphic chondrichthyan tooth family has been proposed, evidence for this hypothesis has been lacking. A new analysis of the development and structure of the tooth plates in Callorhinchus milii (Holocephali, Chimaeriformes) reveals the compound nature of the tooth plates in a chimaeroid fish. Each tooth plate consists of an oral and aboral territory that form independently in the embryo and maintain separate growth surfaces through life. The descending lamina on the aboral surface of the tooth plate demarcates the growth surface of the aboral territory. Comparison with the tooth plates of Chimaera monstrosa indicates that compound tooth plates may be a feature of all chimaeroids in which a descending lamina is present. The tooth plates in these fishes represent the fusion of two members of a reduced tooth family. The condition of the tooth plates in C. milii is plesiomorphic for chimaeroids and is of evolutionary significance in that it provides further evidence to support a lyodont dentition in chimaeroid fishes similar to that found in other chondrichthyans. © 1994 Wiley-Liss, Inc.  相似文献   
7.
Synopsis Habitat partitioning among eleven species of darters (Percidae: Etheostomatini) from the Allegheny River system was studied through underwater observation. Percina caprodes and Percina copelandi showed consistent segregation from Etheostoma by occupying deeper habitats. Substrate size, depth, and water velocity were important variables by which Etheostoma species segregated. Analysis of niche breadth values indicated that species differed widely in their degree of specialization in habitat use; based on the variables measured, Etheostoma zonale was a habitat generalist whereas Etheostoma camurum, Etheostoma tippecanoe, and Percina caprodes tended towards habitat specialization. Habitat segregation appears to be an important mechanism allowing the coexistence of these closely related and ecologically similar species. Microhabitat quantification on a fine scale was important in discovering habitat differences in this diverse system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号