首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
An enzyme-linked fluorometric assay is described for the continuous monitoring of the unidirectional efflux of glutamate from guinea-pig synaptosomes. Glutamate efflux from freshly suspended, polarized synaptosomes occurs at 0.35-0.39 nmol min-1 mg of protein-1 and is not significantly affected by external Ca2+. KCl depolarization (30 mMKCl) in the absence of Ca2+ doubles this rate, whereas in the presence of Ca2+, the initial kinetics of the assay are consistent with the release in the first 5 s of 0.6 nmol mg of protein-1. The final extent of Ca2+-dependent release amounts to 1.9 nmol mg of protein-1, or 8.5% of the total intrasynaptosomal glutamate content. Preincubation of synaptosomes at 30 degrees C for 2 h before depolarization leads to a decrease in Ca2+-independent release and an increase in Ca2+-dependent release, consistent with an intrasynaptosomal relocation of the amino acid.  相似文献   
2.
The release of GABA induced by veratridine shows no correlation with the synaptosomal Ca content and is therefore not mediated by the release of mitochondrial Ca. Instead, with both Ca-repleted and -depleted synaptosomes, the extent of GABA efflux is correlated with the decrease in plasma membrane potential. The slow release of GABA induced by protonophores and the Ca-dependent release induced by ionophore A23187 are also consequences of the depolarization of the plasma membrane, rather than of elevated cytosolic Ca. Finally, the ability of verapamil to inhibit the release of GABA induced by low veratridine concentrations is due to the ability of the Ca channel inhibitor to antagonize the action of veratridine, rather than to inhibit Ca entry into the synaptosome. It is concluded that it is essential to monitor plasma membrane potentials in experiments in which amino acid efflux from synaptosomes is induced.  相似文献   
3.
Abstract: 4-Aminopyridine evokes repetitive firing of synaptosomes and exocytosis of glutamate by inhibiting a dendrotoxin-sensitive K+ channel responsible for stabilizing the membrane potential. We have shown previously that activation of protein kinase C (PKC) by high concentrations of phorbol ester (4β-phorbol dibutyrate) can increase release by inhibiting a dendrotoxin-insensitive ion channel, whereas the metabotropic glutamate receptor (mGluR) agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate [(1 S ,3 R )-ACPD] mimics the action of 4β-phorbol dibutyrate, but only in the presence of 2 µ M arachidonic acid (AA). In this article, we investigate the role of AA. AA plus (1 S ,3 R )-ACPD is without effect on KCl-induced glutamate exocytosis, indicating that the regulatory pathway acts upstream of the release-coupled Ca2+ channel or Ca2+-secretion coupling. Diacylglycerol concentrations are greatly enhanced by (1 S ,3 R )-ACPD alone, independently of AA, indicating that AA acts downstream of phospholipase C. Myristoylated alanine-rich C kinase substrate (MARCKS) is the major presynaptic substrate for PKC. mGluR activation by (1 S ,3 R )-ACPD enhances phosphorylation of MARCKS, but only in the presence of AA. These results strongly suggest that AA acts on presynaptic PKC synergistically with diacylglycerol generated by the phospholipase-coupled mGluR, consistent with the known behaviour of certain purified PKC isoforms. The magnitude of the effects observed in a population of rat cerebrocortical synaptosomes suggests that this is a major mechanism regulating the release of the brain's dominant excitatory neurotransmitter and supports the concept that AA, or a related compound with a similar locus of action, may in certain circumstances play a role in synaptic plasticity.  相似文献   
4.
5.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
6.
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4‐aminopyridine (4‐AP)‐evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post‐synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, and persisted after pre‐treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G‐protein‐independent regulation further in thalamocortical slices, the KAR‐mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca2+ permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+‐induced Ca2+‐release by ryanodine. Thus, the KA‐mediated modulation was contingent on both Ca2+ entry through Ca2+‐permeable KARs and liberation of intracellular Ca2+ stores. Finally, sensitivity to W‐7 indicated that the increased cytosolic [Ca2+] underpinning KAR‐mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre‐synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca2+‐calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G‐protein involvement.

  相似文献   

7.
8.
9.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号