首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1987年   1篇
  1984年   1篇
  1978年   1篇
  1975年   1篇
  1955年   1篇
排序方式: 共有53条查询结果,搜索用时 140 毫秒
1.
2.
The red alga Kappaphycus alvarezii has been reported to be a potential raw material for functional food due to its high content of soluble dietary fibre, mineral, omega-3 fatty acids as well as a substantial amount of essential amino acids. In order to benefit from these excellent nutritional properties, this project aimed to develop a high-value dehydrated snack from K. alvarezii using osmotic dehydration (OD) treatment prior to hot air-drying. A 3?×?3 factorial design with 50°, 60° and 70°Brix sucrose concentration as well as treatment temperatures of 30, 35 and 40 °C were used. In general, an increase in sucrose concentration and temperature promoted mass transfer. OD treatment using 70°Brix sucrose concentration at 40 °C caused case hardening of the seaweed that reduced the solid gain (p?<?0.05). Firmness of the seaweed increased with sucrose concentration and was not altered by temperature (p?<?0.05). The colour of the seaweed was not affected by OD treatment (p?>?0.05), but dehydrated seaweed became darker at high sugar concentration. Interaction effect between sucrose concentration and temperature was found to affect the water loss and solid gain of the OD treatment (p?<?0.05). The best sensory acceptable dehydrated seaweed was successfully identified. The final product contained high dietary fibre and very low Na/K ratio.  相似文献   
3.

Background

Cardiovascular disease (CVD) is the leading cause of death in the developed world. Human genetic studies, including genome-wide sequencing and SNP-array approaches, promise to reveal disease genes and mechanisms representing new therapeutic targets. In practice, however, identification of the actual genes contributing to disease pathogenesis has lagged behind identification of associated loci, thus limiting the clinical benefits.

Results

To aid in localizing causal genes, we develop a machine learning approach, Objective Prioritization for Enhanced Novelty (OPEN), which quantitatively prioritizes gene-disease associations based on a diverse group of genomic features. This approach uses only unbiased predictive features and thus is not hampered by a preference towards previously well-characterized genes. We demonstrate success in identifying genetic determinants for CVD-related traits, including cholesterol levels, blood pressure, and conduction system and cardiomyopathy phenotypes. Using OPEN, we prioritize genes, including FLNC, for association with increased left ventricular diameter, which is a defining feature of a prevalent cardiovascular disorder, dilated cardiomyopathy or DCM. Using a zebrafish model, we experimentally validate FLNC and identify a novel FLNC splice-site mutation in a patient with severe DCM.

Conclusion

Our approach stands to assist interpretation of large-scale genetic studies without compromising their fundamentally unbiased nature.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0534-8) contains supplementary material, which is available to authorized users.  相似文献   
4.
To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.  相似文献   
5.
High-affinity nitrite influx into mycelia of Aspergillus nidulans has been characterized by use of (13)NO(2)(-), giving average K(m) and V(max) values of 48 ± 8 μM and 228 ± 49 nmol mg(-1) dry weight (DW) h(-1), respectively. Kinetic analysis of a plot that included an additional large number of low-concentration fluxes gave an excellent monophasic fit (r(2) = 0.96), with no indication of sigmoidal kinetics. Two-dimensional (2D) and three-dimensional (3D) models of AnNitA are presented, and the possible roles of conserved asparagine residues N122 (transmembrane domain 3 ]Tm 3]), N173 (Tm 4), N214 (Tm 5), and N246 (Tm 6) are discussed.  相似文献   
6.
We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.  相似文献   
7.
Human cancer is caused by the accumulation of genetic alterations in cells. Of special importance are changes that occur early during malignant transformation because they may result in oncogene addiction and thus represent promising targets for therapeutic intervention. We have previously described a computational approach, called Retracing the Evolutionary Steps in Cancer (RESIC), to determine the temporal sequence of genetic alterations during tumorigenesis from cross-sectional genomic data of tumors at their fully transformed stage. Since alterations within a set of genes belonging to a particular signaling pathway may have similar or equivalent effects, we applied a pathway-based systems biology approach to the RESIC methodology. This method was used to determine whether alterations of specific pathways develop early or late during malignant transformation. When applied to primary glioblastoma (GBM) copy number data from The Cancer Genome Atlas (TCGA) project, RESIC identified a temporal order of pathway alterations consistent with the order of events in secondary GBMs. We then further subdivided the samples into the four main GBM subtypes and determined the relative contributions of each subtype to the overall results: we found that the overall ordering applied for the proneural subtype but differed for mesenchymal samples. The temporal sequence of events could not be identified for neural and classical subtypes, possibly due to a limited number of samples. Moreover, for samples of the proneural subtype, we detected two distinct temporal sequences of events: (i) RAS pathway activation was followed by TP53 inactivation and finally PI3K2 activation, and (ii) RAS activation preceded only AKT activation. This extension of the RESIC methodology provides an evolutionary mathematical approach to identify the temporal sequence of pathway changes driving tumorigenesis and may be useful in guiding the understanding of signaling rearrangements in cancer development.  相似文献   
8.
9.
Amplification, deletion, and loss of heterozygosity of genomic DNA are hallmarks of cancer. In recent years a variety of studies have emerged measuring total chromosomal copy number at increasingly high resolution. Similarly, loss-of-heterozygosity events have been finely mapped using high-throughput genotyping technologies. We have developed a probe-level allele-specific quantitation procedure that extracts both copy number and allelotype information from single nucleotide polymorphism (SNP) array data to arrive at allele-specific copy number across the genome. Our approach applies an expectation-maximization algorithm to a model derived from a novel classification of SNP array probes. This method is the first to our knowledge that is able to (a) determine the generalized genotype of aberrant samples at each SNP site (e.g., CCCCT at an amplified site), and (b) infer the copy number of each parental chromosome across the genome. With this method, we are able to determine not just where amplifications and deletions occur, but also the haplotype of the region being amplified or deleted. The merit of our model and general approach is demonstrated by very precise genotyping of normal samples, and our allele-specific copy number inferences are validated using PCR experiments. Applying our method to a collection of lung cancer samples, we are able to conclude that amplification is essentially monoallelic, as would be expected under the mechanisms currently believed responsible for gene amplification. This suggests that a specific parental chromosome may be targeted for amplification, whether because of germ line or somatic variation. An R software package containing the methods described in this paper is freely available at http://genome.dfci.harvard.edu/~tlaframb/PLASQ.  相似文献   
10.
We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from 15N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are α-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. 15N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号