首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   10篇
  2010年   13篇
  2009年   6篇
  2008年   10篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   3篇
  1990年   1篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
  1955年   1篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
2.

Background

Current techniques used to obtain lung samples have significant limitations and do not provide reproducible biomarkers of inflammation. We have developed a novel technique that allows multiple sampling methods from the same area (or multiple areas) of the lung under direct bronchoscopic vision. It allows collection of mucosal lining fluid and bronchial brushing from the same site; biopsy samples may also be taken. The novel technique takes the same time as standard procedures and can be conducted safely.

Methods

Eight healthy smokers aged 40–65 years were included in this study. An absorptive filter paper was applied to the bronchial mucosa under direct vision using standard bronchoscopic techniques. Further samples were obtained from the same site using bronchial brushings. Bronchoalveolar lavage (BAL) was obtained using standard techniques. Chemokine (C-C Motif) Ligand 20 (CCL20), CCL4, CCL5, Chemokine (C-X-C Motif) Ligand 1 (CXCL1), CXCL8, CXCL9, CXCL10, CXCL11, Interleukin 1 beta (IL-1β), IL-6, Vascular endothelial growth factor (VEGF), Matrix metalloproteinase 8 (MMP-8) and MMP-9 were measured in exudate and BAL. mRNA was collected from the bronchial brushings for gene expression analysis.

Results

A greater than 10 fold concentration of all the biomarkers was detected in lung exudate in comparison to BAL. High yield of good quality RNA with RNA integrity numbers (RIN) between 7.6 and 9.3 were extracted from the bronchial brushings. The subset of genes measured were reproducible across the samples and corresponded to the inflammatory markers measured in exudate and BAL.

Conclusions

The bronchoabsorption technique as described offers the ability to sample lung fluid direct from the site of interest without the dilution effects caused by BAL. Using this method we were able to successfully measure the concentrations of biomarkers present in the lungs as well as collect high yield mRNA samples for gene expression analysis from the same site. This technique demonstrates superior sensitivity to standard BAL for the measurement of biomarkers of inflammation. It could replace BAL as the method of choice for these measurements. This method provides a systems biology approach to studying the inflammatory markers of respiratory disease progression.

Trial registration

NHS Health Research Authority (13/LO/0256).  相似文献   
3.
We studied gene flow and bottleneck events in the population history of locally isolated citril finches endemic to European mountains. For the present study, we used two genetic markers with different rates of evolution: a fast evolving mitochondrial marker (ATPase6/8) and a more slowly evolving nuclear marker (02401). Populations north of the Pyrenees showed in general fewer haplotypes and a considerable lower nucleotide and gene diversity than the Iberian populations. Unexpectedly, we found very little genetic variability in the fast evolving mitochondrial marker, arguing for a strong and relatively recent bottleneck event in the species population history. This pattern potentially reflects a sudden decrease of crucial resources during Mid‐Holocene (mountain pine, Scots pine, and black pine) and a subsequent breakdown of the population. The bottleneck could also have been caused or coincide with a selective sweep in the mitochondrion. By contrast, the slowly evolving nuclear marker showed a much higher variability. This marker probably reflects major gene flow along a potential expansion pathway from the Eastern Pyrenees, northwards to the populations of Central Europe, and southwards to the more fragmented populations of central and southern Spain. The population of the Western Pyrenees (Navarra) appears to be cut‐off from this major gene flow and our data indicate a certain degree of partial isolation, probably reflecting more ancient events (e.g. the separation in distinct refuge sites during the last glacial maximum). © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 707–721.  相似文献   
4.
There is a need for safe medications that can effectively support recovery by treating symptoms of protracted abstinence that may precipitate relapse in alcoholics, e.g. craving and disturbances in sleep and mood. This proof-of-concept study reports on the effectiveness of gabapentin 1200 mg for attenuating these symptoms in a non-treatment-seeking sample of cue-reactive, alcohol-dependent individuals. Subjects were 33 paid volunteers with current Diagnostic and Statistical Manual of Mental Disorders-IV alcohol dependence and a strength of craving rating 1 SD or greater for alcohol than water cues. Subjects were randomly assigned to gabapentin or placebo for 1 week and then participated in a within-subjects trial where each was exposed to standardized sets of pleasant, neutral and unpleasant visual stimuli followed by alcohol or water cues. Gabapentin was associated with significantly greater reductions than placebo on several measures of subjective craving for alcohol as well as for affectively evoked craving. Gabapentin was also associated with significant improvement on several measures of sleep quality. Side effects were minimal, and gabapentin effects were not found to resemble any major classes of abused drugs. Results suggest that gabapentin may be effective for treating the protracted abstinence phase in alcohol dependence and that a randomized clinical trial would be an appropriate next step. The study also suggests the value of cue-reactivity studies as proof-of-concept screens for potential antirelapse drugs.  相似文献   
5.
6.
7.
Abstract: In North America, brown bears (Ursus arctos) can be a significant predator on moose (Alces alces) calves. Our study in Sweden is the first in which brown bears are the only predator on moose calves. Bears and moose occurred at densities of about 30/1,000 km2 and 920/1,000 km2, respectively, and bears killed about 26% of the calves. Ninety-two percent of the predation took place when calves were <1 month old. Bear predation was probably additive to other natural mortality, which was about 10% in areas both with and without bears. Females that lost their calves in spring produced more calves the following year (1.54 calves/F) than females that kept their calves (1.11 calves/F), which reduced the net loss of calves due to predation to about 22%.  相似文献   
8.
Next‐generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan ‘BIN’ ontology, which is tailored for functional annotation of plant ‘omics’ data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan‐to‐GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator .  相似文献   
9.

Background

Impaired glucose tolerance (IGT) is a prediabetic state. If IGT can be prevented from progressing to overt diabetes, hyperglycemia-related complications can be avoided. The purpose of the present study was to examine whether pioglitazone (ACTOS®) can prevent progression of IGT to type 2 diabetes mellitus (T2DM) in a prospective randomized, double blind, placebo controlled trial.

Methods/Design

602 IGT subjects were identified with OGTT (2-hour plasma glucose = 140–199 mg/dl). In addition, IGT subjects were required to have FPG = 95–125 mg/dl and at least one other high risk characteristic. Prior to randomization all subjects had measurement of ankle-arm blood pressure, systolic/diastolic blood pressure, HbA1C, lipid profile and a subset had frequently sampled intravenous glucose tolerance test (FSIVGTT), DEXA, and ultrasound determination of carotid intima-media thickness (IMT). Following this, subjects were randomized to receive pioglitazone (45 mg/day) or placebo, and returned every 2–3 months for FPG determination and annually for OGTT. Repeat carotid IMT measurement was performed at 18 months and study end. Recruitment took place over 24 months, and subjects were followed for an additional 24 months. At study end (48 months) or at time of diagnosis of diabetes the OGTT, FSIVGTT, DEXA, carotid IMT, and all other measurements were repeated. Primary endpoint is conversion of IGT to T2DM based upon FPG ≥ 126 or 2-hour PG ≥ 200 mg/dl. Secondary endpoints include whether pioglitazone can: (i) improve glycemic control (ii) enhance insulin sensitivity, (iii) augment beta cell function, (iv) improve risk factors for cardiovascular disease, (v) cause regression/slow progression of carotid IMT, (vi) revert newly diagnosed diabetes to normal glucose tolerance.

Conclusion

ACT NOW is designed to determine if pioglitazone can prevent/delay progression to diabetes in high risk IGT subjects, and to define the mechanisms (improved insulin sensitivity and/or enhanced beta cell function) via which pioglitazone exerts its beneficial effect on glucose metabolism to prevent/delay onset of T2DM.

Trial Registration

clinical trials.gov identifier: NCT00220961  相似文献   
10.
Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual properties originated from the anomalous Hessian fly sex determination system in which postzygotic chromosome elimination is used to establish the sex-determining karyotypes. This system permitted the evolution of a master switch (Chromosome maintenance, Cm) that acts maternally. All of the offspring of females that carry Cm-associated neo-sex chromosomes attain a female-determining somatic karyotype and develop as females. Thus, the chromosomes act as maternal effect neo-W''s, or W-prime (W′) chromosomes, where ZW′ females mate with ZZ males to engender female-producing (ZW′) and male-producing (ZZ) females in equal numbers. Genetic mapping and physical mapping identified the inversions. Their distribution was determined in nine populations. Experimental matings established the association of the inversions with Cm and measured their recombination suppression. The inversions are the functional equivalent of the sciarid X-prime chromosomes. We speculate that W′ chromosomes exist in a variety of species that produce unisexual broods.SEX chromosomes are usually classified as X, Y, Z, or W on the basis of their pattern of segregation and the gender of the heterogametic sex (Ohno 1967). However, when chromosome-based sex determination occurs postzygotically, the same nomenclature confounds important distinctions and may hide interesting evolutionary phenomena. The Hessian fly (Mayetiola destructor), a gall midge (Diptera: Cecidomyiidae) and an important insect pest of wheat, presents an excellent example (Stuart and Hatchett 1988, 1991). In this insect, all of the female gametes and all of the male gametes have the same number of X chromosomes (Figure 1A); no heterogametic sex exists. Nevertheless, Hessian fly sex determination is chromosome based; postzygotic chromosome elimination produces different X chromosome to autosome ratios in somatic cells (male A1A2X1X2/A1A2OO and female A1A2X1X2/A1A2X1X2, where A1 and A2 are the autosomes, X1 and X2 are the X chromosomes, and the paternally derived chromosomes follow the slash) (Stuart and Hatchett 1991; Marin and Baker 1998). Thus, Hessian fly “X” chromosomes are defined by their haploid condition in males, rather than by their segregation in the gametes.Open in a separate windowFigure 1.—Chromosome behavior and sex determination in the Hessian fly. (A) Syngamy (1) establishes the germ-line chromosome constitution: ∼32 maternally derived E chromosomes (represented as a single white chromosome) and both maternally derived (black) and paternally derived (gray) autosomes and X chromosomes. During embryogenesis, while the E chromosomes are eliminated, the paternally derived X chromosomes are either retained (2) or excluded (3) from the presumptive somatic cells. When the paternally derived X chromosomes are retained (2), a female-determining karyotype is established. When they are eliminated (3), a male-determining karyotype is established. Thelygenic mothers carry Cm (white arrow), which conditions all of their offspring to retain the X chromosomes. Recombination occurs during oogenesis (4). All ova contain a full complement of E chromosomes and a haploid complement of autosomes and X chromosomes. Chromosome elimination occurs during spermatogenesis (5). Sperm contain only the maternally derived autosomes and X chromosomes. (B) The segregation of Cm (white dot) on a Hessian fly autosome among monogenic families. Thelygenic females produce broods composed of equal numbers of thelygenic (Cm/−) and arrhenogenic (−/−) females (box 1). Arrhenogenic females produce males (box 2). (C) Matings between monogenic and amphigenic families. Cm (white dot) is dominant to the amphigenic-derived chromosomes (gray dot) and generates all-female offspring (box 3). Amphigenic-derived chromosomes are dominant to the arrhenogenic-derived chromosomes (no dot) and generate offspring of both sexes (box 4).An autosomal, dominant, genetic factor called Chromosome maintenance (Cm) complicates Hessian fly sex determination further (Stuart and Hatchett 1991). Cm has a maternal effect that acts upstream of X chromosome elimination during embryogenesis (Figure 1A). It prevents X chromosome elimination so that all of the offspring of Cm-bearing mothers obtain a female-determining karyotype. Cm-bearing females produce only female offspring and are therefore thelygenic. The absence of Cm usually has the opposite effect; all of the offspring of most Cm-lacking females obtain a male-determining karyotype. These Cm-lacking females produce only male offspring and are therefore arrhenogenic. Like a sex-determining master switch, Cm is usually heterozygous and present in only one sex (Figure 1B). Thus, thelygenic females (Cm/−) are “heterogametic,” as their Cm-containing gametes and Cm-lacking gametes produce thelygenic (Cm/−) and arrhenogenic (−/−) females in a 1:1 ratio. Collectively, thelygenic and arrhenogenic females are called monogenic because they produce unisexual families. However, some Hessian fly females produce broods of both sexes and are called amphigenic. No mating barrier between monogenic and amphigenic families exists (Figure 1C), but amphigenic females have always been found in lower abundance (Painter 1930; Gallun et al. 1961; Stuart and Hatchett 1991). In experimental matings, the inheritance of maternal phenotype was consistent with the segregation of three Cm alleles (Figure 1C): a dominant thelygenic allele, a hypomorphic amphigenic allele, and a null arrhenogenic allele (Stuart and Hatchett 1991).Here we report the genetic and physical mapping of Cm on Hessian fly autosome 1 (A1). Two nonoverlapping inversions were identified that segregated perfectly with Cm. The most distal inversion was present in all thelygenic females examined. The more proximal inversion extended recombination suppression. These observations suggested that successive inversions evolved to suppress recombination around Cm after it arose. The inversions therefore appear to have evolved in response to the forces that shaped vertebrate Y and W chromosomes (Charlesworth 1996; Graves and Shetty 2001; Rice and Chippindale 2001; Carvalho and Clark 2005). We therefore believe the inversion-bearing chromosomes may be classified as maternal effect neo-W''s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号