首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   13篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   14篇
  2012年   9篇
  2011年   10篇
  2010年   6篇
  2009年   4篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1993年   1篇
  1992年   1篇
  1987年   2篇
  1984年   1篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
1.
1. Comparative studies of the polyuridylic acid-directed phenylalanine-incorporating activity of cell-free systems derived from rat and chicken livers demonstrated markedly lower activity in the chicken liver system. 2. The chicken liver cell sap contained the factor(s) responsible for this lower activity. Ribosomes from chicken and rat performed equally well in the presence of rat liver cell sap. Chicken liver cell sap, when mixed with rat liver cell sap, caused an inhibition of incorporation of phenylalanine into acid-insoluble material. 3. Though ribosomal preparations and cell sap from both rat and chicken liver degraded polyuridylic acid to some extent, the chicken liver cell sap contained the largest amount of activity. 4. Rat liver cell sap inhibited the nuclease activities of ribosomal preparations, but no such nuclease inhibition could be demonstrated with chicken liver cell sap.  相似文献   
2.
3.
4.
5.
6.
ABSTRACT:?

Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems.  相似文献   
7.
Abstract

Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp- 96 - a residue which is known to reprotonate the schiffbase at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.  相似文献   
8.
The present work aims to synthesize zinc oxide (ZnO) nanoparticles via green approaches using leaf extract of Parthenium hysterophorus. UV–vis and FT-IR tests confirmed the existence of biomolecules, active materials, and metal oxides. The X-ray diffraction structural study exposes the ZnO nanoparticles formation with hexagonal phase structures. SEM and TEM analysis reveal surface morphologies of ZnO nanoparticles and most of them are spherical with a size range of 10 nm. ZnO nanoparticles were revealed strong antimicrobial activity against both bacterial and fungal strains. The germination of seeds and vegetative growth of Sesamum indicum has been greatly improved.  相似文献   
9.
The objective of this study was to synthesize and characterize novel polyurethane (PU)-nanofiber coated with l-arginine by electrospinning technique. This study determined whether l-arginine conjugated with PU-nanofiber could stimulate cell proliferation and prevent H2O2-induced cell death in satellite cells co-cultured with fibroblasts isolated from Hanwoo (Korean native cattle). Our results showed that l-arginine conjugated with PU nanofiber could reduce cytotoxicity of co-cultured satellite cells. Protein expression levels of bcl-2 were significantly upregulated whereas those of caspase-3 and caspase-7 were significantly downregulated in co-culture of satellite cells compared to those of monoculture cells after treatment with PU-nanofiber coated with l-arginine and which confirmed by Confocal microscope. These results suggest that co-culture of satellite cells with fibroblasts might be able to counter oxidative stress through translocation/penetration of antioxidant, collagen, and molecules secreted to satellite cells. Therefore, this nanofiber might be useful as a wound dressing in animals to counter oxidative stresses.  相似文献   
10.
This study was performed to elucidate the effects of linoleic acid (LA), oleic acid (OA) and their combination (LA?+?OA) on cell proliferation, apoptosis, necrosis, and the lipid metabolism related gene expression in bovine satellite cells (BSCs), isolated from bovine muscles. Cell viability was significantly increased with the OA and LA treatment. Furthermore, LA?+?OA enhanced cell proliferation in a dose-dependent manner (10 to 100?µM), whereas it lowered at 250?µM. In addition, a cell-cycle analysis showed that 100?µM of LA and OA markedly decreased the G0/G1 phase proportion (62.58% and 61.33%, respectively), compared to controls (68.02%), whereas the S-phase cells’ proportion was increased. The ratio of G2/M phase cells was not significantly different among the groups. Moreover, analyses with AO/EtBr staining showed that no apoptosis occurred. Necrosis were determined by flow cytometry using Annexin V-FITC/PI staining which revealed no early apoptosis in the cells pretreated with LA or OA, but occurred in the LA?+?OA group. We also analyzed the mRNA expression of lipid metabolizing genes such as peroxisome proliferator receptor alfa (PPARα), peroxisome proliferator receptor gamma (PPARγ), acyl-CoA oxidase (ACOX), lipoprotein lipase (LPL), carnitine palmitoyl transferase (CPT-1), and fatty-acid binding protein4 (FABP4), which were upregulated in LA or OA treated cells compared to the control group. In essence, LA and OA alone promote the cell proliferation without any apoptosis and necrosis, which might upregulate the lipid metabolism related gene expressions, and increase fatty-acid oxidation in the BSCs’ lipid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号