首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2021年   1篇
  2014年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1995年   1篇
  1984年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.  相似文献   
2.
ABSTRACT: Parenteral artesunate has been shown to be a superior treatment option compared to parenteral quinine in adults and children with severe malaria. Little evidence, however, is available on long-term safety. Recently, cases of late-onset haemolysis after parenteral treatment with artesunate have been reported in European travellers with imported Plasmodium falciparum malaria. Therefore, an extended follow-up of adult patients treated for severe imported malaria was started in August 2011 at the University Medical Center Hamburg-Eppendorf. Until January 2012, three patients with hyperparasitaemia (range: 14-21%) were included for analysis. In all three patients, delayed haemolysis was detected in the second week after the first dose of intravenous artesunate. Reticulocyte production index remained inadequately low in the 7 - 14 days following the first dose of artesunate despite rapid parasite clearance. Post-treatment haemolysis after parenteral artesunate may be of clinical relevance in particular in imported severe malaria characterized by high parasite levels. Extended followup of at least 30 days including controls of haematological parameters after artesunate treatment seems to be indicated. Further investigations are needed to assess frequency and pathophysiological background of this complication.  相似文献   
3.
High virulence of influenza virus A/Puerto Rico/8/34 in mice carrying the Mx1 resistance gene was recently shown to be determined by the viral surface proteins and the viral polymerase. Here, we demonstrated high-level polymerase activity in mammalian host cells but not avian host cells and investigated which mutations in the polymerase subunits PB1, PB2, and PA are critical for increased polymerase activity and high virus virulence. Mutational analyses demonstrated that an isoleucine-to-valine change at position 504 in PB2 was the most critical and strongly enhanced the activity of the reconstituted polymerase complex. An isoleucine-to-leucine change at position 550 in PA further contributed to increased polymerase activity and high virulence, whereas all other mutations in PB1, PB2, and PA were irrelevant. To determine whether this pattern of acquired mutations represents a preferred viral strategy to gain virulence, two independent new virus adaptation experiments were performed. Surprisingly, the conservative I504V change in PB2 evolved again and was the only mutation present in an aggressive virus variant selected during the first adaptation experiment. In contrast, the virulent virus selected in the second adaptation experiment had a lysine-to-arginine change at position 208 in PB1 and a glutamate-to-glycine change at position 349 in PA. These results demonstrate that a variety of minor amino acid changes in the viral polymerase can contribute to enhanced virulence of influenza A virus. Interestingly, all virulence-enhancing mutations that we identified in this study resulted in substantially increased viral polymerase activity.Influenza virus infections continue to represent a major public health threat. Epidemics caused by influenza A viruses (FLUAV) occur regularly, often leading to excess mortality in susceptible populations, and may result in devastating pandemics for humans (37). An avian FLUAV originating from Asia and currently circulating among domestic birds in many countries has the potential to infect and kill people. If further adaptation to humans occurs, this virus strain might become the origin of a future pandemic (57). Although influenza viruses are well characterized, the molecular determinants governing cross-species adaptation and enhanced virulence of emerging virus strains in humans are presently not well understood. The known viral virulence factors are the envelope glycoproteins hemagglutinin (HA) and neuraminidase (NA), the nonstructural proteins NS1 and PB1-F2, and the polymerase complex. HA and NA are of key importance for host specificity and virulence because they determine specific receptor usage and efficient cell entry, as well as formation and release of progeny virus particles. NS1 is a multifunctional protein with interferon-antagonistic activity able to suppress host innate immune responses (11, 15). The small proapoptotic protein PB1-F2 induces more-severe pulmonary immunopathology and increases susceptibility to secondary bacterial pneumonia (3, 30). Recent evidence indicates that the polymerase complex consisting of the three subunits PA, PB1, and PB2 is also a determinant of virulence. Analyses of the 1918 pandemic virus showed that PB1 contributed to the high virulence of this deadly strain (38, 54, 56). Likewise, PB1 also contributed to the unusually high virulence of the pandemic viruses of 1957 and 1968 (23, 47). Interestingly, in recent avian-to-human transmissions of H5N1 and H7N7 viruses, the PB2 subunit was found to play a critical role (32, 40). Molecular studies revealed that an E-to-K exchange at position 627 of PB2 facilitates efficient replication of avian viruses in human cells (24, 33) and determines pathogenicity in mammals (18, 32, 51). Furthermore, recent analyses of highly pathogenic H5N1 viruses demonstrated that PA is involved in high virulence of these avian strains for both avian and mammalian hosts (21, 27).Moderately pathogenic FLUAV strains can be rendered more pathogenic by repeated passages in experimentally infected animals (2, 13, 16, 49, 55). During such adaptations, the evolving viruses frequently seem to acquire virulence-enhancing mutations in the polymerase genes. We recently characterized a virus pair with strikingly different virulences in mice and showed that the virulence-enhancing mutations of the highly virulent strain mapped to the HA, NA, and polymerase genes (13). The two A/Puerto Rico/8/34 (A/PR/8/34) strains are referred to here as high-virulence A/PR/8/34 (hvPR8) and low-virulence A/PR/8/34 (lvPR8). Interestingly, hvPR8 is also highly virulent in mice that carry functional alleles of the Mx1 resistance gene (17), most likely because it replicates rapidly enough to evade the innate immune response of naïve hosts (13).Here, we systematically analyzed which mutations in the three viral polymerase genes contribute to enhanced virulence of hvPR8. We found that two conservative mutations, one in PB2 (I504V) and one in PA (I550L), account for the high-virulence phenotype and that each single mutation considerably increases the activity of the reconstituted polymerase complex. Interestingly, in a new mouse adaptation experiment, the same I504V mutation in PB2 was acquired again by a highly virulent isolate as the only change in the polymerase complex. In contrast, another virulent, mouse-adapted isolate acquired two different mutations in PA and PB1. In this case, the change in PA had a greater impact on both enhanced polymerase activity and enhanced virulence than the mutation in PB1. These data demonstrate that increased polymerase activity contributes to high virus virulence and that human FLUAV have a range of options to achieve this goal.(This work was conducted by Thierry Rolling, Iris Koerner, and Petra Zimmermann in partial fulfillment of the requirements for an M.D. degree from the Medical Faculty [T.R.] or a Ph.D. degree from the Faculty of Biology [I.K. and P.Z.] of the University of Freiburg, Germany.)  相似文献   
4.
Numerous studies have demonstrated the efficacy of the Adeno-Associated Virus (AAV)-based gene delivery platform in vivo. The control of transgene expression in many protocols is highly desirable for therapeutic applications and/or safety reasons. To date, the tetracycline and the rapamycin dependent regulatory systems have been the most widely evaluated. While the long-term regulation of the transgene has been obtained in rodent models, the translation of these studies to larger animals, especially to nonhuman primates (NHP), has often resulted in an immune response against the recombinant regulator protein involved in transgene expression regulation. These immune responses were dependent on the target tissue and vector delivery route. Here, using AAV vectors, we evaluated a doxycyclin-inducible system in rodents and macaques in which the TetR protein is fused to the human Krüppel associated box (KRAB) protein. We demonstrated long term gene regulation efficiency in rodents after subretinal and intramuscular administration of AAV5 and AAV1 vectors, respectively. However, as previously described for other chimeric transactivators, the TetR-KRAB-based system failed to achieve long term regulation in the macaque after intramuscular vector delivery because of the development of an immune response. Thus, immunity against the chimeric transactivator TetR-KRAB emerged as the primary limitation for the clinical translation of the system when targeting the skeletal muscle, as previously described for other regulatory proteins. New developments in the field of chimeric drug-sensitive transactivators with the potential to not trigger the host immune system are still needed.  相似文献   
5.
Jeffreys' approach for analyzing a 2×2-table is discussed via a Monte Carlo study. The main findings are reported.  相似文献   
6.
The aim of this study was to investigate the premise that retinal pigment epithelial (RPE) cells are more permissive to recombinant adeno-associated virus (rAAV) transduction than other cells. We investigated the kinetics and mechanisms of rAAV transduction in RPE cells and found that the transduction efficiencies of cultured RPE cells HRPE51 and ARPE19 were significantly higher than those of 293 (P < 0.008) and HeLa (P < 0.025) cells. In addition, RPE cells reached maximum transduction efficiency at a much lower m.o.i. (m.o.i. 10) than 293 cells (m.o.i. 25). Competition experiments using 1 microg/ml heparin inhibited the high level of transduction in RPE cells by 30%, but additional heparin failed to reduce rAAV transduction further. Southern hybridization of low-molecular-weight DNA from transduced RPE cells indicated that 42% of single-stranded rAAV DNA was translocated into the nucleus by 2 h postinfection. By 6 h postinfection, double-stranded rAAV DNA was observed, which coincided with the onset of transgene expression. Southern and fluorescence in situ hybridization of total genomic DNA indicated that long-term transgene expression in RPE cells was maintained by the integration of rAAV into the cellular chromosome. Together, these results suggest that the high permissiveness of RPE cells is not related to the presence of heparan sulfate receptors or nuclear trafficking but may be due to an enhanced rate of second-strand synthesis and that integration in RPE cells is responsible for long-term transgene expression.  相似文献   
7.
AAV as a viral vector for human gene therapy   总被引:7,自引:0,他引:7  
Investigation of the adeno-associated virus (AAV) life cycle has enabled the establishment of methodology and identification of critical cis-acting sequences required for recombinant AAV production. Vectors derived from the defective human parvovirus (AAV) have been used for successful gene transfer and expression in many diverse mammalian cell types, such as erythroid, airway epithelium, and neuronal cells. One of the crucial steps in the continued case of AAV as a vector is the development of packaging systems that will allow efficient encapsidation of foreign genes into AAV virions. For this reason, the focus of this article will be generation of recombinant AAV vectors.  相似文献   
8.
Recombinant adeno-associated virus (rAAV) vectors are capable of mediating long-term gene expression following administration to skeletal muscle. In rodent muscle, the vector genomes persist in the nucleus in concatemeric episomal forms. Here, we demonstrate with nonhuman primates that rAAV vectors integrate inefficiently into the chromosomes of myocytes and reside predominantly as episomal monomeric and concatemeric circles. The episomal rAAV genomes assimilate into chromatin with a typical nucleosomal pattern. The persistence of the vector genomes and gene expression for years in quiescent tissues suggests that a bona fide chromatin structure is important for episomal maintenance and transgene expression. These findings were obtained from primate muscles transduced with rAAV1 and rAAV8 vectors for up to 22 months after intramuscular delivery of 5 × 1012 viral genomes/kg. Because of this unique context, our data, which provide important insight into in situ vector biology, are highly relevant from a clinical standpoint.  相似文献   
9.
Phenylcyclohexenes (PCHs) [e.g., trans-4-nitro-5-(2,3,4-trimethoxyphenyl)cyclohexene, 2d] were found to bind weakly to the colchicine site of bovine tubulin, but are the first mimics of colchicine found to have high activity towards plant cells. Structure-activity relationships for PCHs and biphenyl AC-ring analogues of colchicine (e.g., 2,3,4,4'-tetramethoxy-2'-methyl-1,1'-biphenyl, 3e) are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号