首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   5篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有39条查询结果,搜索用时 503 毫秒
1.
The complete sequential assignment and conformation of d-GpCpGpC in D2O has been determined from 1D NMR spectra at 285-320 K and room temperature 2D-COSY and NOESY spectra. The tetradeoxynucleotide exists primarily as a right handed double helix at 285 K, having Tm as 314 K. On binding to a tripeptide Lys-Tyr-Lys in a concentration equimolar to tetranucleotide duplex, the Tyr ring protons shift upfield by 0.14 ppm at 285 K. The increase in Tm on binding suggests stabilization of duplex. The existence of intermolecular NOEs between C4 sugar protons and Tyr alpha C and Lys alpha C protons give direct evidence of proximity of Tyr residue to the C4 base of d-GpCpGpC. The conformation of d-GpCpGpC remains unchanged on binding. The observed results are interpreted in terms of preferential stacking of aromatic ring of Tyr residue with proximal base-pair of d-GpCpGpC, stabilized by electrostatic interaction of Lysine side chains with backbone phosphates. This is in contrast to intercalculation of aromatic dyes within base-pairs resulting in a change in sugar conformation at the binding site.  相似文献   
2.
3.
4.
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.  相似文献   
5.

Background

PD is a progressive neurodegenerative disorder commonly treated by levodopa. The findings from genetic studies on adverse effects (ADRs) and levodopa efficacy are mostly inconclusive. Here, we aim to identify predictive genetic biomarkers for levodopa response (LR) and determine common molecular link with disease susceptibility. A systematic review for LR was conducted for ADR, and drug efficacy, independently. All included articles were assessed for methodological quality on 14 parameters. GWAS of PD were also reviewed. Protein-protein interaction (PPI) analysis using STRING and functional enrichment using WebGestalt was performed to explore the common link between LR and PD.

Results

From 37 candidate studies on levodopa toxicity, 18 genes were found associated, of which, CAn STR 13, 14 (DRD2) was most significantly associated with dyskinesia, followed by rs1801133 (MTHFR) with hyper-homocysteinemia, and rs474559 (HOMER1) with hallucination. Similarly, 8 studies on efficacy resulted in 4 genes in which rs28363170, rs3836790 (SLC6A3) and rs4680 (COMT), were significant. To establish the molecular connection between LR with PD, we identified 35 genes significantly associated with PD. With 19 proteins associated with LR and 35 with PD, two independent PPI networks were constructed. Among the 67 nodes (263 edges) in LR, and 62 nodes (190 edges) in PD pathophysiology, UBC, SNCA, FYN, SRC, CAMK2A, and SLC6A3 were identified as common potential candidates.

Conclusion

Our study revealed the genetically significant polymorphism concerning the ADRs and levodopa efficacy. The six common genes may be used as predictive markers for therapy optimization and as putative drug target candidates.
  相似文献   
6.
Even after tremendous molecular studies, early detection,more accurate and sensitive diagnosis, and prognosis of breast cancer appear to be a riddle so far. To stab the enigma, this study is designed to envisage DNA methylation signatures as cancer-specific and stage-specific biomarkers in Indian patients. Rigorous review of scattered scientific reports on aberrant DNA methylation helped us to select and analyze a potential tumor suppressor gene pair (FHIT and p16 genes) in breast cancer patients. Methylation signatures from 232 primary sporadic breast cancer patients were pinpointed by methylation-specific PCR (MSP). To increase the sensitivity, we combined both MSP and expression studies (RT-PCR and Northern blotting) in a reproducible manner. Statistical analysis illustrated that hypermethylation of FHIT gene ( p < 0.0001) and p16 gene ( p=0.04) may be used as a potential diagnostic marker to diagnose the early and locally advanced stages of breast cancer. Additionally, the study authenticates the dependency of methylation and expressional loss of p16 gene on FHIT gene silencing. This observation not only describes the severity of disease when both genes are silenced but also drives to speculate the molecular cross talk between two genes or genetic pathways dictated by them separately.  相似文献   
7.
Literature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR) analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n = 355) and risperidone (n = 260) treated subgroups. All associations were estimated as odds ratio (OR) and 95% confidence interval (CI) and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396) of PIP4K2A gene in incomplete responders (corrected p-value = 0.001; adjusted-OR = 3.19, 95%-CI = 1.46–6.98) with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR = 7.91, 95%-CI = 4.08–15.36). While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in incomplete responders with low severity (OR = 4.09, 95%-CI = 2.09–8.02). Our findings provide strong evidence that diplotype ATTGCT/ATTGCT of PIP4K2A gene conferred approximately three-times higher incomplete responsiveness towards antipsychotics in severely ill patients. These results are consistent with the known role of phosphatidyl-inositol-signaling elements in antipsychotic action and outcome. Findings have implication for future molecular genetic studies as well as personalized medicine. However more work is warranted to elucidate underlying causal biological pathway.  相似文献   
8.
Proteins as a biomolecule have been recognized as a “molecule with manifold biological functions”. The functions not only include the structural, regulatory and transportation processes inside the body but also its capacity as an extremely specific catalyst for various biochemical reactions. Nature has been quite admirably using proteins as biocatalysts which are known as enzymes. Properties like higher reaction rate, good specificity, faster kinetics, production of lesser by‐products and their non‐hazardous nature make enzymes the most suitable targets for a process chemist to exploit. At the same time, limitations like a narrow range of substrates, requirement of coenzymes, lesser stability, smaller shelf‐life, along with difficulties in procuring these enzymes, make this biocatalysis field quite challenging. For exploiting a broad range of applications related to therapeutics, biosensors, biotechnology, nanotechnology etc., de novo designing of proteins is of utmost importance. Enzymes with altered, specific and modified properties might be designed by utilizing the prior knowledge of structure and function of a protein with the help of computational modeling. Various protein engineering techniques like directed evolution, rational designing and immobilization strategies etc. have already been extensively used to address some of the issues. This review aims to update the repertoire of the advancements in the field of protein engineering, which can help in laying some guiding principles about designing, modifying and altering their usage for commercial industrial purposes. This possibility of effective and novel designing of peptides and proteins might further facilitate our understanding about the structure, function and folding patterns along with their inter‐relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of β-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A → B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.  相似文献   
10.
Widely dispersed in genomic DNA, the tandem C‐rich repetitive stretches may fold below physiological pH, into i‐motif structures, stabilized by C·C+ pairing. Herein, structural status of a 9‐mer stretch d(CCCTAACCC), [the truncated double repeat of human telomeric sequence], and its extended version, comprising of additional ? TAA segment at the 3′‐end, representing the complete double repeat d(CCCTAACCCTAA), has been investigated. The pH dependent monophasic UV‐melting, Gel and CD data suggested that while the truncated version adopts a bimolecular i‐motif structure, its complete double repeat (12‐mer) sequence exists in two (bimolecular and tetramolecular) forms. A model is proposed for the tetramolecular i‐motif with conventional C · C+ base pairs, additionally stabilized by asymmetric A · A base pairs at the ?3′ TAA flanking ends and Watson–Crick A · T hydrogen bonding between intervening bases on antiparallel strands. Expanding the known topologies of DNA i‐motifs, such atypical geometries of i‐motifs may have implications in their recognition by proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 150–160, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号