首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   55篇
  2023年   1篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   14篇
  2015年   18篇
  2014年   17篇
  2013年   28篇
  2012年   26篇
  2011年   29篇
  2010年   23篇
  2009年   22篇
  2008年   20篇
  2007年   25篇
  2006年   23篇
  2005年   19篇
  2004年   16篇
  2003年   29篇
  2002年   26篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   14篇
  1997年   6篇
  1996年   9篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1982年   5篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1973年   2篇
  1957年   1篇
排序方式: 共有469条查询结果,搜索用时 353 毫秒
1.
2.
3.
Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation.  相似文献   
4.
We report a cytogenetic investigation of 55 low-grade astrocytomas in 52 patients, 15 children and 37 adults. In addition to numerical aberrations such as trisomy 7 and gonosomal losses, we found structural and/or numerical aberrations of chromosome 1 in eight astrocytomas. There was a striking difference between the rearranged chromosomes in pediatric and adult patients. Whereas the pediatric tumors revealed monosomies 1p with accompanying trisomy 1q, the astrocytomas in adults showed partial or complete monosomies 1q.  相似文献   
5.
It is now well established that the σS subunit of RNA polymerase is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-inducible genes in Escherichiacoli. In this review, more recent findings will be summarized that demonstrate that σS also acts as a global regulator for the osmotic control of gene expression, and actually does so in exponentially growing cells. Thus, many σS-dependent genes are induced during entry into stationary phase as well as in response to osmotic upshift. K+ glutamate, which accumulates in hyperosmotically stressed cells, seems to specifically stimulate the activity of σS-containing RNA polymerase at σS-dependent promoters. Moreover, osmotic upshift results in an elevated cellular σS level similar to that observed in stationary-phase cells. This increase is the result of a stimulation of rpoS translation as well as an inhibition of the turnover of σS, which in exponentially growing non-stressed cells is a highly unstable protein. Whereas the RNA-binding protein HF-I, previously known as a host factor for the replication of phage Qβ RNA, is essential for rpoS translation, the recently discovered response regulator RssB, and ClpXP protease, have been shown to be required for σS degradation. The finding that the histone-like protein H-NS is also involved in the control of rpoS translation and σS turnover, sheds new light on the function of this protein in osmoregulation. Finally, preliminary evidence suggests that additional stresses, such as heat shock and acid shock, also result in increased cellular σS levels in exponentially growing cells. Taken together, σS function is clearly not confined to stationary phase. Rather, σS may be regarded as a sigma factor associated with general stress conditions.  相似文献   
6.
The sigma S subunit of RNA polymerase is the master regulator of a regulatory network that controls stationary-phase induction as well as osmotic regulation of many genes in Escherichia coli. In an attempt to identify additional regulatory components in this network, we have isolated Tn10 insertion mutations that in trans alter the expression of osmY and other sigma S-dependent genes. One of these mutations conferred glucose sensitivity and was localized in pgi (encoding phosphoglucose isomerase). pgi::Tn10 strains exhibit increased basal levels of expression of osmY and otsBA in exponentially growing cells and reduced osmotic inducibility of these genes. A similar phenotype was also observed for pgm and galU mutants, which are deficient in phosphoglucomutase and UDP-glucose pyrophosphorylase, respectively. This indicates that the observed effects on gene expression are related to the lack of UDP-glucose (or a derivative thereof), which is common to all three mutants. Mutants deficient in UDP-galactose epimerase (galE mutants) and trehalose-6-phosphate synthase (otsA mutants) do not exhibit such an effect on gene expression, and an mdoA mutant that is deficient in the first step of the synthesis of membrane-derived oligosaccharides, shows only a partial increase in the expression of osmY. We therefore propose that the cellular content of UDP-glucose serves as an internal signal that controls expression of osmY and other sigma S-dependent genes. In addition, we demonstrate that pgi, pgm, and galU mutants contain increased levels of sigma S during steady-state growth, indicating that UDP-glucose interferes with the expression of sigma S itself.  相似文献   
7.
8.
9.
The possibility of using the enzyme (R)-Oxynitrilase in a biphasic lyotropic liquid crystal/dibutylether system has been demonstrated. This reaction system is applicable for the continuous production of (R)-benzaldehydecyanohydrin in a fixed bed reactor. The optical purity was between 94 and 96% ee and independent of the flow rate. The space time yield was maximal (2650 g/(1*d)) at a flow rate of 1.6 ml/min.  相似文献   
10.
During carbon-starvation-induced entry into stationary phase, Escherichia coli cells exhibit a variety of physiological and morphological changes that ensure survival during periods of prolonged starvation. Induction of 30-50 proteins of mostly unknown function has been shown under these conditions. In an attempt to identify C-starvation-regulated genes we isolated and characterized chromosomal C-starvation-induced csi::lacZ fusions using the lambda placMu system. One operon fusion (csi2::lacZ) has been studied in detail. csi2::lacZ was induced during transition from exponential to stationary phase and was negatively regulated by cAMP. It was mapped at 59 min on the E. coli chromosome and conferred a pleiotropic phenotype. As demonstrated by two-dimensional gel electrophoresis, cells carrying csi2::lacZ did not synthesize at least 16 proteins present in an isogenic csi2+ strain. Cells containing csi2::lacZ or csi2::Tn10 did not produce glycogen, did not develop thermotolerance and H2O2 resistance, and did not induce a stationary-phase-specific acidic phosphatase (AppA) as well as another csi fusion (csi5::lacZ). Moreover, they died off much more rapidly than wild-type cells during prolonged starvation. We conclude that csi2::lacZ defines a regulatory gene of central importanc e for stationary phase E. coli cells. These results and the cloning of the wild-type gene corresponding to csi2 demonstrated that the csi2 locus is allelic with the previously identified regulatory genes katF and appR. The katF sequence indicated that its gene product is a novel sigma factor supposed to regulate expression of catalase HPII and exonuclease III (Mulvey and Loewen, 1989). We suggest that this novel sigma subunit of RNA polymerase defined by csi2/katF/appR is a central early regulator of a large starvation/stationary phase regulon in E. coli and propose 'rpoS' ('sigma S') as appropriate designations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号