首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   6篇
  2023年   4篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   11篇
  2012年   12篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   7篇
  2002年   14篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有174条查询结果,搜索用时 234 毫秒
1.
The subfamily Eneopterinae is known greatly for its diversified acoustic modalities and disjunct distribution. Within Eneopterinae, tribe Lebinthini is the most studied group, due to its highest species diversity (ca. 150 species in 12 genera), endemic distribution on the islands of Southeast Asia and of the South West Pacific, males’ ability to produce high‐frequency calling songs, and evolution of females’ vibrational response. To investigate the distribution pattern and diversification of acoustic and behavioral attributes in a larger frame, clear understanding of phylogenetic relationships within other tribes of Eneopterinae is vital. In this study, we focus on the tribe Xenogryllini, sister group of Lebinthini. Xenogryllini, as opposed to Lebinthini, is known by fewer species (11 species in two genera), distributed widely in continental Asia and Africa, and for producing low‐frequency calling songs. We describe a new genus Indigryllus with a new species of the tribe Xenogryllini, discovered from the southwest of India. We used eight molecular genetic markers to reconstruct the phylogenetic relationships. The resultant phylogenetic tree is used to compare and discuss distribution patterns and acoustic modalities between Lebinthini and Xenogryllini.  相似文献   
2.
Synthesis of a library of novel trans 6-methoxy-1,1-dimethyl-2-phenyl-3-aryl-2,3-dihydro-1H-inden-4-yloxy alkyl amines and their antimycobacterial activity against drug sensitive and multidrug resistant strains of Mycobacterium tuberculosis have been reported. All the new compounds in the series exhibited MIC between 1.56 and 6.25 μg/ml. Two compounds 1i and 1j with low MIC and low cytotoxicity showed significant reduction in CFU in infected mouse macrophages at 1× MIC concentration. The compound 1i inhibited the growth of M. tuberculosis in mice at 100 mg/kg dose with 1.35 log10 reduction of CFU in lungs tissue and was active against non-replicating Mycobacterium tuberculosis under anaerobic condition.  相似文献   
3.
Photosynthesis Research - Heterosis is a phenomenon wherein F1 hybrid often displays phenotypic superiority and surpasses its parents in terms of growth and agronomic traits. Investigations on the...  相似文献   
4.
Earlier we showed that chronic administration of engineered nanoparticles (NPs) from metals, e.g., Cu, Ag, or Al (50–60 nm, 50 mg/kg, i.p. daily for 1 week) alter blood–brain barrier (BBB) disruption and induce brain pathology in adult rats (age 18 to 22 weeks). However, effects of size-dependent neurotoxicity of NPs in vivo are still largely unknown. In present investigation, we examined the effects of different size ranges of the above-engineered NPs on brain pathology in rats. Furthermore, the fact that age is also an important factor in brain pathology was also investigated in our rat model. Our results showed that small-sized NPs induced the most pronounced BBB breakdown (EBA +480 to 680 %; radioiodine +850 to 1025 %), brain edema formation (+4 to 6 %) and neuronal injuries (+30 to 40 %), glial fibrillary acidic protein upregulation (+40 to 56 % increase), and myelin vesiculation (+30 to 35 % damage) in young animals as compared to controls. Interestingly, the oldest animals (30 to 35 weeks of age) also showed massive brain pathology as compared to young adults (18 to 20 weeks old). The Ag and Cu exhibited greater brain damage compared with Al NPs in all age groups regardless of their size. This suggests that apart from the size, the composition of NPs is also important in neurotoxicity. The very young and elderly age groups exhibited greater neurotoxicity to NPs suggests that children and elderly are more vulnerable to NPs-induced brain damage. The NPs-induced brain damage correlated well with the upregulation of neuronal nitric oxide synthase activity in the brain indicating that NPs-induced neurotoxicity may be mediated via increased production of nitric oxide, not reported earlier.  相似文献   
5.
6.
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.  相似文献   
7.
8.
The active principle in a methanolic extract of the laboratory-grown cyanobacterium, Fischerella sp. isolated from Neem (Azadirachta indica) tree bark was active against Mycobacterium tuberculosis, Enterobacter aerogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli as well as three multi-drug resistant E. coli strains in in vitro assays. Based on MS, UV, IR 1H NMR analyses the active principle is proposed to be hapalindole T having the empirical formula C21H23N2ClSO and a molecular weight of 386 with the melting point range 179–182 °C. The estimated production of Hapalindole T from the cyanobacterium is 1.25 mg g−1 lyophilized biomass. It is suggested that cyanobacteria colonizing specialized niches such as tree bark could be an antibacterial drug resource.  相似文献   
9.
10.
Plant Cell, Tissue and Organ Culture (PCTOC) - Cowpea (Vigna unguiculata (L.) Walp.) is a warm-season legume crop which is widely grown by resource-poor small and marginal farmers of Sub-Saharan...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号