首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21255篇
  免费   1091篇
  国内免费   29篇
  2023年   182篇
  2022年   231篇
  2021年   692篇
  2020年   472篇
  2019年   504篇
  2018年   751篇
  2017年   663篇
  2016年   886篇
  2015年   1019篇
  2014年   1286篇
  2013年   1772篇
  2012年   1875篇
  2011年   1676篇
  2010年   974篇
  2009年   892篇
  2008年   1003篇
  2007年   970篇
  2006年   828篇
  2005年   735篇
  2004年   609篇
  2003年   511篇
  2002年   459篇
  2001年   359篇
  2000年   321篇
  1999年   290篇
  1998年   113篇
  1997年   85篇
  1996年   95篇
  1995年   90篇
  1994年   72篇
  1993年   65篇
  1992年   173篇
  1991年   168篇
  1990年   130篇
  1989年   113篇
  1988年   148篇
  1987年   121篇
  1986年   97篇
  1985年   101篇
  1984年   104篇
  1983年   53篇
  1982年   55篇
  1981年   55篇
  1980年   53篇
  1979年   75篇
  1978年   48篇
  1977年   57篇
  1976年   40篇
  1975年   36篇
  1974年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.  相似文献   
2.
The biosynthetic enzyme peptidylglycine alpha-amidating monooxygenase catalyzes the formation of a variety of biologically active alpha-amidated peptides from respective COOH-terminal glycine-extended peptide precursors. Peptidylglycine alpha-amidating monooxygenase activity is dependent on copper, ascorbate, and molecular oxygen and is inhibited by the relatively selective copper chelator N,N-diethyldithiocarbamate or its disulfide dimer disulfiram (Antabuse). In the present study, chronic disulfiram treatment (100 mg/kg/day, for 12-25 days) resulted in significant changes in several neurochemical parameters in the mouse central nervous system, including levels of substance P-like, unamidated substance P-Gly-like, and protease-generated substance P-Gly-Lys-like immunoreactivities (SP-LI, SP-G-LI, and SP-G-K-LI, respectively). Combined high performance liquid chromatography/radioimmunoassay analyses of the extracted SP-LI, SP-G-LI, and SP-G-K-LI species indicated very similar chromatographic and immunochemical behavior as demonstrated for chemically authentic peptide standards. Additionally, changes in levels of monoamines and their metabolites were observed after drug administration. Complementary immunohistochemical analyses using affinity-purified anti-SP-G sera localized these drug-induced changes in levels of immunoreactive unamidated precursor to neural elements that normally express SP. As a functional corollary to alterations in neurochemical parameters, we observed significant disulfiram-induced increases in pain thresholds, potentiated by capsaicin treatment. Overall, our results indicate that the observed changes in steady state levels of immunoreactive SP and of the immature COOH-terminal extended forms of SP may reflect compensatory biosynthetic and posttranslational processing events in SP-containing neural systems after pharmacological challenge.  相似文献   
3.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
4.
Peptide transport in Saccharomyces cerevisiae is controlled by three genes: PTR1, PTR2, and PTR3. PTR1 was cloned and sequenced and found to be identical to UBR1, a gene previously described as encoding the recognition component of the N-end-rule pathway of the ubiquitin-dependent proteolytic system. Independently derived ubr1 mutants, like ptr1 mutants, were unable to transport small peptides into ceils. Concomitantly, ptr1 mutants, like ubr1 mutants, were unable to degrade an engineered substrate of the N-end-rule pathway. Further, ptr1 mutants did not express PTR2, a gene encoding the integral membrane component required for peptide transport in S. cerevisiae. These results establish a physiological role for a protein previously known to be required for the degradation of N-end-rule substrates. Our findings show that peptide transport and the ubiquitin pathway—two dynamic phenomena universal to eukaryotic cells—share a common component, namely UBR1/PTR1.  相似文献   
5.
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder, for which people above the age of 60 show an increased risk. Although there has been great advancement in understanding the disease-related abnormalities in brain circuitry and development of symptomatic treatments, a cure for PD remains elusive. The discovery of PD associated gene mutations and environmental toxins have yielded animal models of the disease. These models could recapitulate several key aspects of PD, and provide more insights into the disease pathogenesis. They have also revealed novel aspects of the disease mechanism including noncell autonomous events and spreading of pathogenic protein species across the brain. Nevertheless, none of these models so far can comprehensively represent all aspects of the human disease. While the field is still searching for the perfect model system, recent developments in stem cell biology have provided a new dimension to modelling PD, especially doing it in a patient-specific manner. In the current review, we attempt to summarize the key findings in the areas discussed above, and highlight how the core PD pathology distinguishes itself from other neurodegenerative disorders while also resembling them in many aspects.  相似文献   
6.
7.
8.
Femtosecond transient absorption was used to study excitation decay in monomeric and trimeric cyanobacterial Photosystem I (PSI) being prepared in three states: (1) in aqueous solution, (2) deposited and dried on glass surface (either conducting or non-conducting), and (3) deposited on glass (conducting) surface but being in contact with aqueous solvent. The main goal of this contribution was to determine the reason of the acceleration of the excitation decay in dried PSI deposited on the conducting surface relative to PSI in solution observed previously using time-resolved fluorescence (Szewczyk et al., Photysnth Res 132(2):111–126, 2017). We formulated two alternative working hypotheses: (1) the acceleration results from electron injection from PSI to the conducting surface; (2) the acceleration is caused by dehydration and/or crowding of PSI proteins deposited on the glass substrate. Excitation dynamics of PSI in all three types of samples can be described by three main components of subpicosecond, 3–5, and 20–26 ps lifetimes of different relative contributions in solution than in PSI-substrate systems. The presence of similar kinetic components for all the samples indicates intactness of PSI proteins after their deposition onto the substrates. The kinetic traces for all systems with PSI deposited on substrates are almost identical and they decay significantly faster than the kinetic traces of PSI in solution. We conclude that the accelerated excitation decay in PSI-substrate systems is caused mostly by dense packing of proteins.  相似文献   
9.
The process of crop domestication occurs through the selection and subsequent propagation of novel alleles that improve traits of interest. Cultivated tomato (Solanum lycopersicum), particularly heirloom varieties, exhibit a wide range of variation in fruit size, shape and color. The green-flesh mutant of tomato possesses a stay-green phenotype resulting in fruits that ripen to a red-brown color, due to the retention of chlorophyll and the simultaneous accumulation of lycopene. The recent identification of the GREEN-FLESH gene provides a molecular tool with which to investigate the origin of a subset of cultivated tomato varieties that resemble the green-flesh mutant. Sequence analysis of the GF locus from 26 varieties revealed the existence of four previously unidentified null alleles. This study illustrates the potential of cultivated tomato varieties, including heritage cultivars, heirlooms, and land races, for uncovering new alleles in genes of interest.  相似文献   
10.
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号