首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals'' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning.  相似文献   
2.
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.  相似文献   
3.
The study evaluated the effects of three different theoretical particle lengths (TPL) of grass silage on the distribution of particle fractions of the diet and the resulting effects on fermentation profile and concentrations of protozoa and mixed bacterial mass in the rumen of three lactating Holstein cows fed total mixed rations (45% grass silage, 5% grass hay and 50% concentrate) ad libitum. Decreasing TPL of grass silage (long, medium, short) reduced particles retained on the 19-mm sieve of the Penn State Particle Separator, while particle fractions from 8 mm to 19 mm and smaller than 8 mm were increased. Different TPL did not affect pH and the concentration of volatile fatty acids in the rumen. However, lowering the TPL from long to medium increased significantly the bicarbonate concentration, acetate proportion and protozoal number in the rumen, whereas the proportion of bacterial protein in ruminal digesta and its amino acid concentration were significantly increased by the short TPL. For the current feeding conditions, it can be concluded that increasing the fraction of particles between 8 and 19 mm and probably even the fraction below 8 mm by decreasing TPL of grass silage do not adversely affect rumen conditions and can be beneficial in terms of optimising concentration and activity of ruminal microbiota in high-yielding dairy cows.  相似文献   
4.
The aim of this study was to investigate the effects of high-quality hay with an elevated sugar content alone or with graded amounts of concentrate feed on chewing and ruminating activity, apparent total tract digestibility (ATTD) and ruminal pH at different time points after feeding in the free ruminal liquid (FRL) and the particle-associated ruminal liquid (PARL). Eight rumen cannulated non-lactating Holstein cows were arranged in a Latin square design in four experimental runs lasting 25 d each. The four diets tested were 60NQ (60% normal-quality hay + 40% concentrate), 60HQ (60% high-quality hay + 40% concentrate), 75HQ (75% high-quality hay + 25% concentrate) and 100HQ (100% high-quality hay). Normal and high-quality hays differed in sugar contents (11.3% vs. 18.7% in dry matter [DM]), neutral detergent fibre (NDF; 57.7% vs. 46.3% in DM), acid detergent fibre (ADF, 35.0% vs. 23.5% in DM) and crude protein (CP, 11.3% vs. 23.5% in DM). Data showed that ATTD of DM, CP, NDF and ADF was higher with the high-quality hay diets. Time spent eating was reduced with high-quality hay. However, time spent ruminating was longest in Group 100HQ. In all groups, ruminal pH of FRL and PARL decreased with time after the morning feeding. But 10 h later, pH of Group 100HQ was higher again compared with the other groups. Considering the average pH in FRL over all measured time points, cows in Groups 60NQ and 100HQ had higher pH values of 6.85 and 6.83, respectively. Regarding pH values in PARL, animals of Group 60NQ displayed the highest pH value (6.68), whereas the lowest value of 6.21 was found in Group 60HQ. Overall, results suggest that high-quality hay maintains the diet’s structural effectiveness by stimulating rumination and stabilising ruminal pH while greatly improving ATTD. However, the structural effectiveness of the high-quality hay gets impaired with increasing proportion of concentrate feed in the diet.  相似文献   
5.
An improved understanding of the role of forage quality on the processes of particle dynamics and turnover is important for the development of healthier and cost-effective feeding strategies that aim at lowering the proportions of concentrates in the diets of cattle. The aim of this study was to evaluate the effects of feeding hays of different qualities on particle dynamics, digestion kinetics and turnover in the gastrointestinal tract (GIT). Three non-lactating, rumen fistulated Holstein cows were fed diets consisting exclusively of hay with either low quality [Group LH; 605 ± 12.4 g/kg neutral detergent fibre (NDF) and 63 ± 4.7 g/kg crude protein (CP)] or good quality (Group GH; 551 ± 20.1 g/kg NDF and 116 ± 3.6 g/kg CP). Data showed that in situ dry matter (DM) disappearance of the soluble fraction was greater for Group GH (p < 0.05). Feeding good quality hay also lowered the proportion of particles >1.18 mm particularly during the eating process (p < 0.05). Changes in the particle size occurring afterwards were greater for Group GH as well (p < 0.05); approximately 30% in the comminution in the particle size occurred postruminally. Feeding hay of good quality lowered DM content of solid rumen digesta (p < 0.05), accelerated (p < 0.05) the turnover rate of DM and NDF in the GIT and increased DM intake (p < 0.05). In conclusion, feeding forages of better quality significantly promoted degradation processes and kinetics in the GIT with positive effects on turnover rate of digesta and feed intake in Holstein cows.  相似文献   
6.
Dairy cows are commonly fed energy-dense diets with high proportions of concentrate feedstuffs to meet the increased energy needs of early lactation. However, feeding large amounts of concentrates may cause rumen acidosis and impact cow health. The hypothesis tested was that the energy supply and metabolic health of early-lactation Simmental cows can be maintained when high-quality hay rich in water-soluble carbohydrates (WSC) and crude protein (CP) is fed, despite the proportion of concentrates in the diet being reduced or even excluded. Twenty-four Simmental cows were allocated to one of four feeding groups beginning 10 d before the expected calving date, until 28 d thereafter. The feeding groups were 60CH (60% conventional fibre-rich hay plus 40% concentrate feed), 60HQH (60% high-quality hay plus 40% concentrate feed), 75HQH (75% high-quality hay plus 25% concentrate feed) and 100HQH (100% high-quality hay). The fibre-rich hay and high-quality hay differed in WSC content (110 g vs. 198 g of dry matter (DM)), neutral detergent fibre (646 g vs. 423 g of DM) and CP (65 g vs. 223 g of DM). Individual feed intake and milk production were monitored daily, and blood samples were collected weekly. Dry matter intake (DMI) and milk yield increased post partum, but 4 weeks post partum, the DMI of cows fed 100HQH only reached a daily mean DMI of 18.6 kg, whereas the DMI of the other groups averaged 21.9 kg (p < 0.046). The negative energy balance was less pronounced in cows fed 75HQH since they showed similar milk yields to the cows fed 60CH and 100HQH, but their energy intake was higher. Concentrations of milk components were similar across rations 60CH, 60HQH and 75HQH, as were most of blood parameters. Cows fed 100HQH responded to the energy deficit post partum with a higher ratio of non-esterified fatty acids to cholesterol and a higher concentration of ß-hydroxybutyrate (significant in comparison to cows fed 75HQH, p < 0.05). In conclusion, feeding high-quality hay with a WSC content of 20% in DM has the potential to decrease the proportion of concentrates in dairy cow feeding in early lactation, but cannot fully replace their supplementation due to a limited rumen capacity for forage intake.  相似文献   
7.
8.
The aim of this study was to evaluate effects of partial replacement of neutral detergent soluble fibre (NDSF) for starch in diets varying in particle size (PS) of alfalfa hay on chewing activities, ruminal fermentation, nutrient digestibility and performance in mid-lactation dairy cows. Eight multiparous Holstein cows (146 ± 6.0 d in milk; 36.7 ± 2.57 kg milk/d) were used in a replicated 4 × 4 Latin square design with four 21 d periods with the last 7 d for data collection. The experiment was a 2 × 2 factorial arrangement with 2 levels of NDSF (low = 85 g/kg or high = 130 g/kg diet dry matter) each combined with 2 PS (short = 20 mm or long = 40 mm) of alfalfa hay. Results show that forage PS alone, or in combination with NDSF inclusion, had no effect on dry matter (DM) intake. Although total chewing, eating and ruminating times were not affected by treatments, eating time per kg of neutral detergent fibre (NDF) ingested was higher in long versus short alfalfa hay-based diets (P<0.05). Feeding long forage PS increased sorting of the diet against particles >19 mm, and in favor of those <8 mm (P<0.05). Feeding diets high in NDSF lowered DM intake (P<0.05), but increased apparent digestibility of all nutrients including NDF (P<0.05) independent of forage PS. Ruminal pH and concentrations of total volatile fatty acids were unaffected by dietary treatments, however the proportion of butyrate was higher in ruminal fluid of cows fed high NDSF diets (P<0.05). Changes in milk composition included lower milk crude protein content in high NDSF diets and higher lactose content for short hay-based diets (P<0.05). That milk yield and milk energy output were similar in low versus high NDSF diets suggests that high NDSF-fed cows had higher energy efficiency due to lower DM intake. Results suggest that, independent of forage PS, NDSF sources can be successfully included to partly replace starchy grains in diets exceeding minimum fibre recommendations.  相似文献   
9.
This study investigated effects of dietary forage particle size (PS) and concentrate level (CL) on fermentation profiles of particle-associated rumen liquid (PARL) and free rumen liquid (FRL), in vitro degradation characteristics and concentration of bacterial mass attached to the solid or fluid rumen digesta phase in dairy cows. The experiment was a 4 × 4 Latin square design with four late-lactation dairy cows in four 23 day periods. Cows were restrictively fed (17 kg dry matter (DM)/d) one of four diets varying in the theoretical PS (6 and 30 mm) of grass hay and in the levels (approximately 200 and 550 g/kg, DM basis) of a cereal-based concentrate. Proportion of large particles (>6 mm) and the content of structural fibre in the diet increased by reducing dietary CL and, particularly, by increasing hay PS. This effect was not reflected by changes in mean total volatile fatty acid concentration or pH in the rumen. However, cows fed high concentrate diets had pH of 5.28 and 5.37 in PARL at 3 h after the last meal, when fine or long chopped hay was offered. The low pH may indicate a depression of the capacity of PARL to degrade fibre in vitro. Gas production in vitro of concentrate increased with the high concentrate diet at 12 h, suggesting that amylolytic capacity was affected only in early phases of fermentation. In addition, elevating dietary CL appeared to shift ruminal fermentation outputs from propionate to butyrate and valerate. Inclusion of coarsely chopped hay to a high concentrate diet does not appear to bring advantages due to increased structure in restrictively fed dairy cows. In addition, results suggest that the response of pH in PARL is more sensitive to dietary changes (i.e., forage PS and CL) than the response in FRL, and so PARL might be better to evaluate the risk of ruminal disfunction in dairy cows.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号