首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   39篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   9篇
  2017年   20篇
  2016年   10篇
  2015年   16篇
  2014年   10篇
  2013年   12篇
  2012年   18篇
  2011年   17篇
  2010年   13篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   8篇
  2005年   10篇
  2004年   6篇
  2003年   11篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   12篇
  1998年   7篇
  1997年   6篇
  1996年   1篇
  1995年   4篇
  1994年   12篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   2篇
排序方式: 共有297条查询结果,搜索用时 171 毫秒
1.
 We tested the hypothesis that changed microclimate at induced forest edges causes reduced growth of epiphytic lichens. Two foliose, green algal lichens were transplanted to the lower canopy of a mature Picea abies forest at six distances (2, 6.25, 12.5, 25, 50 and 100 m) from a clearcut. The biomass growth in Platismatia glauca (6.2% in 16 months) was 41% higher than in Lobaria pulmonaria (4.4%). We found no growth reduction near the forest edge. In contrast, the highest growth in both species occurred within 12 m from the edge. Further, fluorescence and chlorophyll measurements showed that lichen vitality was unaffected by distance from edge. The light intensity was 4.3 times higher at the edge than in the interior during the growing season, but there were only minor differences in air temperature and relative humidity. Monitoring of thallus water content revealed clear differences in both number and length of wetting and drying cycles. However, the total time with water content sufficient for photosynthetic activity was only slightly higher at the edge. The data thus indicate that our gradient in microclimate was too small to significantly affect lichen growth, and that lichens are largely metabolically inactive when large edge-interior contrasts in microclimate occur. Lichen response to forest edge microclimate results from intricate interactions among several biotic and abiotic factors. Linking data on lichen growth, microclimate and thallus water content with physiological measurements provides a framework for future studies of the mechanisms behind abiotic edge effects. Received: 15 April 1996 / Accepted: 21 June 1996  相似文献   
2.
The energetic adaptations of non-breeding Tengmalm's owls (Aegolius funereus) to temperature and fasting were studied during the birds' autumnal irruptions in western Finland. Allometric analysis (including literature data and two larger owl species measured in this study) indicates that the basal metabolic rate of owls is below the mean level of non-passerine birds. However, the basal metabolic rate of the 130-g Tengmalm's owl (1.13 W) is higher than in other owls of similar size. This is probably related to its northern distribution and nomadic life history. Relative to its size, Tengmalm's owl has excellent cold resistance due to effective insulation (lower critical temperature +10°C, minimum conductance 0.19 mW·cm-2·°C-1). Radiotelemetric measurements of body temperature showed that the level of body temperature is lower than for birds in general (39.4°C at zero activity) and that the amplitude of the diurnal cycle is also low (0.2–0.6°C). In contrast to many other small birds, Tengmalm's owls do not enter hypothermia during a 5-day fast at thermoneutrality or in cold. Moreover, while the metabolic rate per bird shows the expected mass-dependent decrease, the mass-specific rate decreases only slightly during the fast. In line with this, there was no decrease in the plasma triiodothyronine concentration during the fast in the owl, whereas a dramtic drop was observed in the pigeon and Japanese quail that were used as a reference. Despite this, the owl has an excellent capacity for fasting because of its ability to accumulate extensive fat depots and its low overall metabolic rate. Fasting reduced evaporative water loss to 50% of that in the fed state. Calculations show that the oxygen consumption observed in fasting birds would involve a production of metabolic water barely sufficient to compensate for evaporative water loss. The threat of dehydration may thus set a limit to the decrease in metabolic rate in fasting owls (owls rely totally on water either ingested with food or produced metabolically). We conclude that the metabolic strategy in Tengmalm's owl is largely dictated by an evolutionary pressure for fasting endurance. With the restrictions set by small body size and water economy, this bird has apparently taken these adaptations to an extreme. The constraints that preclude hypothermia, which could increase the capacity for fasting even more, remain unknown.Abbreviations BM body mass - BMR basal metabolic rate - EWL vaporative water loss - MR metabolic rate - T3 triiodothyronine - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   
3.
4.
5.
An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified and characterised from the unicellular green alga Coccomyxa sp. Initial studies showed that cultured Coccomyxa cells contain an intracellular CA activity around 100 times higher than that measured in high-CO2-grown cells of Chlamydomonas reinhardtii CW 92. Purification of a protein extract containing the CA activity was carried out using ammonium-sulphate precipitation followed by anion-exchange chromatography. Proteins were then separated by native (non-dissociating) polyacrylamide gel electrophoresis, with each individual protein band excised and assayed for CA activity. Measurements revealed CA activity associated with two discrete protein bands with similar molecular masses of 80 +5 kDa. Dissociation by denaturing polyacrylamide gel electrophoresis showed that both proteins contained a single polypeptide of 26 kDa, suggesting that each 80-kDa native protein was a homogeneous trimer. Isoelectric focusing of the 80-kDa proteins also produced a single protein band at a pH of 6.5. Inhibition studies on the purified CA extract showed that 50% inhibition of CA activity was obtained using 1 M azetazolamide. Polyclonal antibodies against the 26-kDa CA were produced and shown to have a high specific binding to a single polypeptide in soluble protein extracts from Coccomyxa cells. The same antiserum, however, failed to cross-react with soluble proteins isolated from two different species of green algae, Chlamydomonas reinhardtii and Chlorella vulgaris. Correspondingly, antisera directed against pea chloroplastic CA, extracellular CA from C. reinhardtii and human CAII, showed no cross-hybridisation to the 26-kDa polypeptide in Coccomyxa. The 26-kDa protein was confirmed as being a CA by N-terminal sequencing of two internal polypeptide fragments and alignment of these sequences with that of previously identified CA proteins from several different species.Abbreviations CA carbonic anhydrase - CCM CO2-concentrating mechanism - IEF isoelectric focusing - Rubisco ribulose-l,5-bisphosphate carboxylase/oxygenase We would like to thank Drs. Cecilia Forsman, Inga-Maj Johansson and Nalle Jonsson for their valuable advice concerning the isolation of CA. This work was supported by the Swedish Natural Research Council and Seth M. Kempes Memorial foundation.  相似文献   
6.
Polyphosphate kinase is a component of the Escherichia coli RNA degradosome   总被引:8,自引:6,他引:2  
Xer site-specific recombination functions in the stable inheritance of circular plasmids and bacterial chromosomes. Two related recombinases, XerC and XerD, mediate this recombination, which 'undoes' the potential damage of homologous recombination. Xer recombination on natural plasmid sites is preferentially intramolecular, converting plasmid multimers to monomers. In contrast, recombination at the Escherichia coli recombination site, dif , occurs both intermolecularly and intramolecularly, at least when dif is inserted into a multicopy plasmid. Here the DNA sequence features of a family of core recombination sites in which the XerC- and XerD-binding sites, which are separated by 6 bp, were analysed in order to ascertain what determines whether recombination will be preferentially intramolecular, or will occur both within and between molecules. Sequence changes in either the XerC- or XerD-binding site can alter the recombination outcome. Preferential intramolecular recombination between a pair of recombination sites requires additional accessory DNA sequences and accessory recombination proteins and is correlated with reduced affinities of recombinase binding to recombination core sites, reduced XerC-mediated cleavage in vitro , and an apparent increased overall bending in recombinase–core-site complexes.  相似文献   
7.
Summary Twelve fungal cultures belonging to the genera ofAspergillus, Tricboderma, Chaetomium, Stachybotrys, andHypocrea were screened for the production of cellulolytic activity. All twelve were found to degrade xylan, avicel, and carboxymethylcellulose, More cellulolytic activity was obtained with shaken cultures than with still cultures and the addition of citrate-phosphate buffer to the media greatly depressed the levels of cellulolytic activity. Varying the composition of the mineral salts in the medium had no effect on the cellulolytic activity.The growth ofAspergillus wentii under controlled conditions in a bioreactor showed that the cellulolytic activity was not affected by the aeration rate or the type of stirrer. The rate of stirring, however, did effect the cellulolytic activity, as at lower stirring speeds considerable wall growth occurred which resulted in low levels of cellulolytic activity.Culture supernatant fromAspergillus wentii was found to hydrolyze from 30–32% of Solka-Floc and from 2–10% of corn cobs, wheat straw, and newsprint. The extensive hydrolysis of the Solka-Floc indicates that with suitably treated cellulosic wastes and appropriate enzymes, appreciable amounts of sugars could be obtained.  相似文献   
8.
Here, we perform an ecomorphological study on the major bones (humerus, radius, and ulna) of the carnivoran forelimb using three-dimensional geometric morphometrics. More specifically, we test the association between forelimb morphology and predatory behavior. Our results suggest that the main morphological adaptions of carnivorans to different predatory behaviors relate to: (i) the capacity to perform long and efficient runs as in pounce/pursuit and pursuit predators; (ii) the ability to maneuver as in occasional predators; and (iii) the capacity to exert and resist large loads as in ambushing predators. We used borophagine canids as a case study, given the controversy on the predatory behavior of this extinct subfamily. Our results indicate that borophagines displayed a limited set of adaptions towards efficient running, including reduced joint mobility in both the elbow and the wrist, aspects in which they resemble the living canids. Furthermore, they had forelimbs as powerful as those of the extant ambushing carnivorans (i.e., most felids). This combination of traits suggests that the predatory behavior of borophagines was unique among carnivorans, as it was not fully equivalent to any of the living species.  相似文献   
9.
There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free‐living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM communities are impacted by N enrichment and to estimate whether these changes influence decay of litter and humus. We conducted a long‐term experiment in northern Sweden, maintained since 2004, consisting of ambient, low N additions (0, 3, 6, and 12 kg N ha?1 year?1) simulating current N deposition rates in the boreal region, as well as a high N addition (50 kg N ha?1 year?1). Our data showed that long‐term N enrichment impeded mass loss of litter, but not of humus, and only in response to the highest N addition treatment. Furthermore, our data showed that EM fungi reduced the mass of N and P in both substrates during the incubation period compared to when only SAP organisms were present. Low N additions had no effect on microbial community structure, while the high N addition decreased fungal and bacterial biomasses and altered EM fungi and SAP community composition. Actinomycetes were the only bacterial SAP to show increased biomass in response to the highest N addition. These results provide a mechanistic understanding of how anthropogenic N enrichment can influence soil C accumulation rates and suggest that current N deposition rates in the boreal region (≤12 kg N ha?1 year?1) are likely to have a minor impact on the soil microbial community and the decomposition of humus and litter.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号