首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2022年   2篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2013年   2篇
  2007年   2篇
  2006年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有19条查询结果,搜索用时 23 毫秒
1.
Sixty-four strains of acetic acid bacteria were isolated from Indonesian sources such as fruits, flowers, and fermented foods by the enrichment culture at pH 3.5. Forty-five strains were routinely identified as Acetobacter strains because of their oxidation of acetate and lactate to carbon dioxide and water and their Q-9 isoprenolog, corresponding to 70% of all the 64 acetic acid bacteria isolated. Eight isolates were identified as Gluconacetobacter strains because of their oxidation of acetate and lactate and their Q-10 isoprenolog, occupying 13% of all the isolates. The remaining 11 isolates, accommodated in the genus Gluconobacter because of no oxidation of acetate and lactate and because of their Q-10 isoprenolog, accounted for 17% of all the isolates. They were divided into two groups based on DNA base compositions. One comprised the seven isolates, which had high G1C contents of DNA ranging from 60.3 to 63.5 mol% and of which DNAs hybridized with that of the type strain of Gluconobacter oxydans at values of 64-94% of DNA relatedness. The other comprised the remaining four isolates, which had low G+C contents of DNA ranging from 57.5 to 57.7 mol% and of which DNAs hybridized with that of the type strain of Gluconobacter frateurii at values of 63-77% of DNA relatedness. The high values of DNA relatedness, 84 to 96%, were obtained between the type strains of Gluconobacter cerinus and Gluconobacter asaii.  相似文献   
2.
3.
All plants contain an unusual class of hemoglobins that display bis-histidyl coordination yet are able to bind exogenous ligands such as oxygen. Structurally homologous hexacoordinate hemoglobins (hxHbs) are also found in animals (neuroglobin and cytoglobin) and some cyanobacteria, where they are thought to play a role in free radical scavenging or ligand sensing. The plant hxHbs can be distinguished from the others because they are only weakly hexcacoordinate in the ferrous state, yet no structural mechanism for regulating hexacoordination has been articulated to account for this behavior. Plant hxHbs contain a conserved Phe at position B10 (Phe(B10)), which is near the reversibly coordinated distal His(E7). We have investigated the effects of Phe(B10) mutation on kinetic and equilibrium constants for hexacoordination and exogenous ligand binding in the ferrous and ferric oxidation states. Kinetic and equilibrium constants for hexacoordination and ligand binding along with CO-FTIR spectroscopy, midpoint reduction potentials, and the crystal structures of two key mutant proteins (F40W and F40L) reveal that Phe(B10) is an important regulatory element in hexacoordination. We show that Phe at this position is the only amino acid that facilitates stable oxygen binding to the ferrous Hb and the only one that promotes ligand binding in the ferric oxidation states. This work presents a structural mechanism for regulating reversible intramolecular coordination in plant hxHbs.  相似文献   
4.
The role of the proximal heme iron ligand in activation of hydrogen peroxide and control of spin state and coordination number in heme proteins is not yet well understood. Although there are several examples of amino acid sidechains with oxygen atoms which can act as potential heme iron ligands, the occurrence of protein-derived oxygen donor ligation in natural protein systems is quite rare. The sperm whale myoglobin cavity mutant H93G Mb (D. Barrick, Biochemistry 33 (1994) 6546) has its proximal histidine ligand replaced by glycine, a mutation which leaves an open cavity capable of accommodation of a variety of unnatural potential proximal ligands. This provides a convenient system for studying ligand-protein interactions. Molecular modeling of the proximal cavity in the active site of H93G Mb indicates that the cavity is of sufficient size to accommodate benzoate and phenolate in conformations that allow their oxygen atoms to come within binding distance of the heme iron. In addition, benzoate may occupy the cavity in an orientation which allows one carboxylate oxygen atom to ligate to the heme iron while the other carboxylate oxygen is within hydrogen bonding distance of serine 92. The ferric phenolate and benzoate complexes have been prepared and characterized by UV-visible and MCD spectroscopies. The benzoate adduct shows characteristics of a six-coordinate high-spin complex. To our knowledge, this is the first known example of a six-coordinate high-spin heme complex with an anionic oxygen donor proximal ligand. The benzoate ligand is displaced at alkaline pH and upon reaction with hydrogen peroxide. The phenolate adduct of H93G Mb is a five-coordinate high-spin complex whose UV-visible and MCD spectra are distinct from those of the histidine 93 to tyrosine (H93Y Mb) mutant of sperm whale myoglobin. The phenolate adduct is stable at alkaline pH and exhibits a reduced reactivity with hydrogen peroxide relative to that of both native ferric myoglobin, and the exogenous ligand-free derivative of ferric H93G Mb. These observations indicate that the identity of the proximal oxygen donor ligand has an important influence on both the heme iron coordination number and the reactivity of the complex with hydrogen peroxide.  相似文献   
5.
Halder P  Trent JT  Hargrove MS 《Proteins》2007,66(1):172-182
Present in most organisms, hexacoordinate hemoglobins (hxHbs) are proteins that have evolved the capacity for reversible bis-histidyl heme coordination. The heme prosthetic group enables diverse protein functionality, such as electron transfer, redox reactions, ligand transport, and enzymatic catalysis. The reactivity of heme is greatly effected by the coordination and noncovalent chemical environment imposed by its connate protein. Of considerable interest is how the hxHb globin fold achieves reversible intramolecular coordination while still enabling high-affinity binding of oxygen, nitric oxide, and other small ligands. Here we explore this question by examining the role of the protein matrix on coordination behavior in a group of hxHbs from animals, plants, and bacteria, including human neuroglobin and cytoglobin, a nonsymbiotic hemoglobin from rice, and a truncated hemoglobin from the cyanobacterium Synechocystis. This is done with a set of experiments measuring the reduction potentials of each wild-type hxHb and its corresponding mutant protein where the reversibly bound histidine (the distal His) has been replaced with a noncoordinating side chain. These reduction potentials, coupled with studies of the mutant proteins saturated with exogenous imidazole, enable us to assess the effects of the protein matrices on histidine coordination. Our results show significant variation among the hxHbs, demonstrating flexibility in the globin moiety's ability to regulate reversible coordination. This regulation is particularly evident in the plant nonsymbiotic hemoglobins, where ferric state histidine coordination affinity is substantially lowered by the protein matrix.  相似文献   
6.
Synechocystis hemoglobin contains an unprecedented covalent bond between a nonaxial histidine side chain (H117) and the heme 2-vinyl. This bond has been previously shown to stabilize the ferric protein against denaturation, and also to affect the kinetics of cyanide association. However, it is unclear why Synechocystis hemoglobin would require the additional degree of stabilization accompanying the His117-heme 2-vinyl bond because it also displays endogenous bis-histidyl axial heme coordination, which should greatly assist heme retention. Furthermore, the mechanism by which the His117-heme 2-vinyl bond affects ligand binding has not been reported, nor has any investigation of the role of this bond on the structure and function of the protein in the ferrous oxidation state. Here we report an investigation of the role of the Synechocystis hemoglobin His117-heme 2-vinyl bond on structure, heme coordination, exogenous ligand binding, and stability in both the ferrous and ferric oxidation states. Our results reveal that hexacoordinate Synechocystis hemoglobin lacking this bond is less stable in the ferrous oxidation state than the ferric, which is surprising in light of our understanding of pentacoordinate Hb stability, in which the ferric protein is always less stable. It is also demonstrated that removal of the His117-heme 2-vinyl bond increases the affinity constant for intramolecular histidine coordination in the ferric oxidation state, thus presenting greater competition for the ligand binding site and lowering the observed rate and affinity constants for exogenous ligands.  相似文献   
7.
Forty-six strains of acetic acid bacteria newly isolated from flowers, fruits, and fermented foods collected in Indonesia were taxonomically studied. They were Gram-negative rods, produced acetic acid from ethanol, oxidized acetate and lactate to CO(2) and H(2)O, and had Q-9 as the major ubiquinone system. On the basis of DNA-DNA similarity, all strains studied, including type strains and reference strains of the genus Acetobacter, were separated into eleven groups (Groups I to XI). Of the 46 isolates, two isolates were included in Group II and identified as Acetobacter pasteurianus, five in Group IV as A. orleanensis, 16 in Group V as A. lovaniensis, five in Group VII as A. indonesiensis, and three in Group VIII as A. tropicalis. The remaining 15 isolates constituted three new groups based on DNA-DNA similarity; four isolates were included in Group IX, two in Group X, and nine in Group XI. No isolates were identified as A. aceti (Group I), A. peroxydans (Group III), and A. estunensis (Group VI). Phylogenetic analysis based on 16S rDNA sequences of representative strains of the Groups indicated belonging to the strains of the genus Acetobacter. On the basis of DNA base composition, DNA-DNA similarity, and 16S rDNA sequences, three new species of the genus Acetobacter are proposed: Acetobacter syzygii sp. nov. for Group IX, Acetobacter cibinongensis sp. nov. for Group X, and Acetobacter orientalis sp. nov. for Group XI. The distribution of Acetobacter strains in Indonesia is discussed in light of isolation sources.  相似文献   
8.
9.
Das  Debashis  Banerjee  Sourav  Chatterjee  Puspita  Biswas  Manju  Biswas  Utpal  Alnumay  Waleed 《Cluster computing》2022,25(3):1899-1913

The automated toll-tax collection system (ATCS) is advantageous to facilitate traffic management at the toll plaza and to save fuel for vehicles. The most advanced application of the electronic toll collection (ETC) system is to collect the toll-tax amount (TA) at toll plazas of the national highways. The few existing TA collection systems suffer from data security, transparency, privacy, and data immutability as these are centralized systems. As the Blockchain is a decentralized, transparent, secure, and low-cost technology. However, this paper presents an intelligent transportation management system (I-TMS) using Blockchain. The proposed I-TMS shows the way of implementation of blockchain technology for vehicle data management in various applications of I-TMS. Herein, a framework of blockchain-enabled ATCS (BATCS) is provided as a blockchain-based I-TMS application to collect TAs without stopping vehicles while they pass the toll plaza. Smart contracts are used to authenticate vehicles’ data and to collect TAs automatically. An efficient algorithm is presented for data verification and TA collection in this paper. This research work provides a secure, transparent, and privacy-preserving framework in the field of the ETC system. The significant contributions of the BATCS compared with the RFID-based system are less fuel consumption and time-saving for a vehicle. The proposed framework can enhance data security and user privacy in the intelligent decentralized ETC system.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号