首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2023年   1篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  1998年   2篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
Pumping power as delivered by the heart is generated by the cells in the myocardial wall. In the present model study global left-ventricular pump function as expressed in terms of cavity pressure and volume is related to local wall tissue function as expressed in terms of myocardial fiber stress and strain. On the basis of earlier studies in our laboratory, it may be concluded that in the normal left ventricle muscle fiber stress and strain are homogeneously distributed. So, fiber stress and strain may be approximated by single values, being valid for the whole wall. When assuming rotational symmetry and homogeneity of mechanical load in the wall, the dimensionless ratio of muscle fiber stress (sigma f) to left-ventricular pressure (Plv) appears to depend mainly on the dimensionless ratio of cavity volume (Vlv) to wall volume (Vw) and is quite independent of other geometric parameters. A good (+/- 10%) and simple approximation of this relation is sigma f/Plv = 1 + 3 Vlv/Vw. Natural fiber strain is defined by ef = In (lf/lf,ref), where lf,ref indicates fiber length (lf) in a reference situation. Using the principle of conservation of energy for a change in ef, it holds delta ef = (1/3)delta In (1 + 3Vlv/Vw).  相似文献   
2.
Aortic valve stenosis impairs subendocardial perfusion with a risk of irreversible subendocardial tissue damage. A likely precursor of damage is subendocardial contractile dysfunction, expressed by the parameter TransDif, which is defined as epicardial minus endocardial myofiber shortening, normalized to the mean value. With the use of magnetic resonance tagging in two short-axis slices of the left ventricle (LV), TransDif was derived from LV torsion and contraction during ejection. TransDif was determined in healthy volunteers (control, n = 9) and in patients with aortic valve stenosis before (AVSten, n = 9) and 3 mo after valve replacement (AVRepl, n = 7). In the control group, TransDif was 0.00 +/- 0.14 (mean +/- SD). In the AVSten group, TransDif increased to 0.96 +/- 0.62, suggesting impairment of subendocardial myofiber shortening. In the AVRepl group, TransDif decreased to 0.37 +/- 0.20 but was still elevated. In eight of nine AVSten patients, the TransDif value was elevated individually (P < 0.001), suggesting that the noninvasively determined parameter TransDif may provide important information in planning of treatment of aortic valve stenosis.  相似文献   
3.

Background  

Rupture of the cap of a vulnerable plaque present in a coronary vessel may cause myocardial infarction and death. Cap rupture occurs when the peak cap stress exceeds the cap strength. The mechanical stress within a cap depends on the plaque morphology and the material characteristics of the plaque components. A parametric study was conducted to assess the effect of intima stiffness and plaque morphology on peak cap stress.  相似文献   
4.
Intraventricular synchrony of cardiac activation is important for efficient pump function. Ventricular pacing restores the beating frequency but induces more asynchronous depolarization and more inhomogeneous contraction than in the normal heart. We investigated whether the increased inhomogeneity in the left ventricle can be described by a relatively simple mathematical model of cardiac electromechanics, containing normal mechanical and impulse conduction properties. Simulations of a normal heartbeat and of pacing at the right ventricular apex (RVA) were performed. All properties in the two simulations were equal, except for the depolarization sequence. Simulation results of RVA pacing on local depolarization time and systolic midwall circumferential strain were compared with those measured in dogs, using an epicardial sock electrode and MRI tagging, respectively. We used the same methods for data processing for simulation and experiment. Model and experiment agreed in the following aspects. 1) Ventricular pacing decreased systolic pressure and ejection fraction relative to natural sinus rhythm. 2) Shortening during ejection and stroke work declined in early depolarized regions and increased in late depolarized regions. 3) The relation between epicardial depolarization time and systolic midwall circumferential strain was linear and similar for the simulation (slope = -3.80 +/- 0.28 s(-1), R2 = 0.87) and the experiments [slopes for 3 animals -2.62 +/- 0.43 s(-1) (R2 = 0.59), -2.97 +/- 0.38 s(-1) (R2 = 0.69), and -4.44 +/- 0.51 s(-1) (R2 = 0.76)]. We conclude that our model of electromechanics is suitable to simulate ventricular pacing and that the apparently complex events observed during pacing are caused by well-known basic physiological processes.  相似文献   
5.
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.  相似文献   
6.
7.
Complexity of the geometry and structure of the heart hampers easy modeling of cardiac mechanics. The modeling can however be simplified considerably when using the hypothesis that in the normal heart myofiber structure and geometry adapt, until load is evenly distributed. A simple and realistic relationship is found between the hemodynamic variables cavity pressure and volume, and myofiber load parameters stress and strain. The most important geometric parameter in the latter relation is the ratio of cavity volume to wall volume, while actual geometry appears practically irrelevant. Applying the found relationship, a realistic maximum is set to left ventricular pressure after chronic pressure load. Pressures exceeding this level are likely to cause decompensation and heart failure. Furthermore, model is presented to simulate left and right ventricular pump function with left-right interaction.  相似文献   
8.
We propose a novel, two-degree of freedom mathematical model of mechanical vibrations of the heart that generates heart sounds in CircAdapt, a complete real-time model of the cardiovascular system. Heart sounds during rest, exercise, biventricular (BiVHF), left ventricular (LVHF) and right ventricular heart failure (RVHF) were simulated to examine model functionality in various conditions. Simulated and experimental heart sound components showed both qualitative and quantitative agreements in terms of heart sound morphology, frequency, and timing. Rate of left ventricular pressure (LV dp/dtmax) and first heart sound (S1) amplitude were proportional with exercise level. The relation of the second heart sound (S2) amplitude with exercise level was less significant. BiVHF resulted in amplitude reduction of S1. LVHF resulted in reverse splitting of S2 and an amplitude reduction of only the left-sided heart sound components, whereas RVHF resulted in a prolonged splitting of S2 and only a mild amplitude reduction of the right-sided heart sound components. In conclusion, our hemodynamics-driven mathematical model provides fast and realistic simulations of heart sounds under various conditions and may be helpful to find new indicators for diagnosis and prognosis of cardiac diseases.New & noteworthyTo the best of our knowledge, this is the first hemodynamic-based heart sound generation model embedded in a complete real-time computational model of the cardiovascular system. Simulated heart sounds are similar to experimental and clinical measurements, both quantitatively and qualitatively. Our model can be used to investigate the relationships between heart sound acoustic features and hemodynamic factors/anatomical parameters.  相似文献   
9.

Background

Delayed left ventricular (LV) lateral wall activation is considered the electrical substrate that characterises patients suitable for cardiac resynchronisation therapy (CRT). Although typically associated with left bundle branch block, delayed LV lateral wall activation may also be present in patients with non-specific intraventricular conduction delay (IVCD). We assessed LV lateral wall activation in a cohort of CRT candidates with IVCD using coronary venous electroanatomical mapping, and investigated whether baseline QRS characteristics on the ECG can identify delayed LV lateral wall activation in this group of patients.

Methods

Twenty-three consecutive CRT candidates with IVCD underwent intra-procedural coronary venous electroanatomical mapping using EnSite NavX. Electrical activation time was measured in milliseconds from QRS onset and expressed as percentage of QRS duration. LV lateral wall activation was considered delayed if maximal activation time measured at the LV lateral wall (LVLW-AT) exceeded 75 % of the QRS duration. QRS morphology, duration, fragmentation, axis deviation, and left anterior/posterior fascicular block were assessed on baseline ECGs.

Results

Delayed LV lateral wall activation occurred in 12/23 patients (maximal LVLW-AT = 133 ± 20 ms [83 ± 5 % of QRS duration]). In these patients, the latest activated region was consistently located on the basal lateral wall. QRS duration, and prevalence of QRS fragmentation and left/right axis deviation, and left anterior/posterior fascicular block did not differ between patients with and without delayed LV lateral wall activation.

Conclusion

Coronary venous electroanatomical mapping can be used at the time of CRT implantation to determine the presence of delayed LV lateral wall activation in patients with IVCD. QRS characteristics on the ECG seem unable to identify delayed LV lateral wall activation in this subgroup of patients.  相似文献   
10.
Assessment of the magnitude of regional myocardial work requires knowledge of regional fiber stress and fiber shortening. The theoretical development and experimental validation of a method is presented which used values of estimated active and passive fiber stress according to a fluid-fiber model, and measured fiber strain values. This enables the construction of regional stress-strain diagrams, a regional analog of the pressure-volume area model by Suga and co-investigators, which can be linked to regional oxygen consumption. In the left ventricle, either normally or asynchronously activated, the method yields reliable data on strain and active and passive fiber stress. The relation between estimated regional work and myocardial oxygen demand is in quantitative agreement with previously reported relations between global oxygen demand and measured pressure-volume area. During coronary artery occlusion, however, these values were less reliable, which might be due to inaqdequate knowledge of the (passive) material properties of the myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号