首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2013年   3篇
  2012年   1篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry–based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.  相似文献   
4.
5.
Mucormycoses are opportunistic fungal infections with a high mortality rate. Rhizopus oryzae is the most common agent implicated in human infections. Although R. homothallicus has been previously reported to be a cause of pulmonary mucormycosis, it is the first time that we are reporting as a causative agent of rhino-orbital and cutaneous mucormycosis.  相似文献   
6.
Copper, while toxic in excess, is an essential micronutrient in all kingdoms of life due to its essential role in the structure and function of many proteins. Proteins mediating ionic copper import have been characterised in detail for eukaryotes, but much less so for prokaryotes. In particular, it is still unclear whether and how gram-negative bacteria acquire ionic copper. Here, we show that Pseudomonas aeruginosa OprC is an outer membrane, TonB-dependent transporter that is conserved in many Proteobacteria and which mediates acquisition of both reduced and oxidised ionic copper via an unprecedented CxxxM-HxM metal binding site. Crystal structures of wild-type and mutant OprC variants with silver and copper suggest that acquisition of Cu(I) occurs via a surface-exposed “methionine track” leading towards the principal metal binding site. Together with whole-cell copper quantitation and quantitative proteomics in a murine lung infection model, our data identify OprC as an abundant component of bacterial copper biology that may enable copper acquisition under a wide range of conditions.

How do Gram-negative bacteria acquire copper? This study shows that the outer membrane protein OprC from Pseudomonas aeruginosa is abundant during infection and mediates highly selective acquisition of both copper redox states via an extracellular "methionine track" and an unprecedented near-irreversible binding site.  相似文献   
7.
This study is focused on isolation and characterisation of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens isolates from different soils of groundnut-based cropping systems in Andhra Pradesh. In our studies, 21 isolates of P. fluorescens were isolated and confirmed through various biochemical tests, of which five were tested positive for 2,4-DAPGproduction with specific primers. Biocontrol potential of these isolates on groundnut stem rot pathogen (Sclerotium rolfsii) was determined through in vitro dual culture assays. The eight isolates were found effective against S. rolfsii (up to 75% inhibition) in dual culture method. All the five 2,4-DAPG-producing Plant Growth-Promoting Rhizobacteria isolates were highly antagonistic to S. rolfsii. Genetic diversity of these P. fluorescens isolates was determined by random amplification of polymorphic DNA analysis. Overall, our results suggest that the prevalence of 2,4-DAPG-producing fluorescent Pseudomonads in different crop rhizospheres of groundnut-based cropping systems.  相似文献   
8.
The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and −1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and −1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9Δ3 background caused significantly increased −1 frameshifting at 37°C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30°C, supporting its context-dependent role.  相似文献   
9.
10.
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号