首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 7 毫秒
1
1.
This study evaluated the potential use of several Thai seaweed species for ethanol production. The high biomass of the green algae Ulva intestinalis and Rhizoclonium riparium and the red algae Gracilaria salicornia and Gracilaria tenuistipitata in an earthen pond culture led us to select these species for our study. The seaweed species were analyzed for chemical composition, resulting in ash contents of 37.62?±?0.15 % and fiber of 11.93?±?0.16 %, with the highest values in R. riparium. Low lipid values were found in all species, with the highest value (p?<?0.05) in G. salicornia (1.69?±?0.07 %) and the lowest in R. riparium (0.28?±?0.01 %) and G. tenuistipitata (0.26?±?0.01 %). The highest carbohydrate contents were found in G. tenuistipitata (54.89 %), and the lowest were in R. riparium (29.53 %). G. tenuistipitata (8.58?±?0.36 %) and U. intestinalis (8.24?±?0.28 %) had higher sulfate contents compared with G. salicornia (4.69?±?0.04 %) and R. riparium (1.97?±?0.20 %). The monosugar algal tissue components were analyzed by HPLC; rhamnose, xylose, fucose, arabinose, mannose, glucose, and galactose were used as reference sugars. Total sugar was found to be highest in G. tenuistipitata (98.21 %). Arabinose, glucose, and galactose were the main sugar components in all species. Glucose obtained from G. tenuistipitata (6.55 %) and R. riparium (6.52 %) was higher than in G. salicornia (0.27 %) and U. intestinalis (2.78 %). G. tenuistipitata fermentation gave a higher yield of ethanol (4.17?×?10?3 g ethanol g?1 sugars; 139.12 μg ethanol g?1 glucose) than R. riparium (0.086?×?10?3 g ethanol g?1 sugars; 33.84 μg ethanol g?1 glucose), U. intestinalis (0.074?×?10?3 g ethanol g?1 sugars; 9.98 μg ethanol g?1 glucose), and G. salicornia (0.031?×?10?3 g ethanol g?1 sugars; 1.43 μg ethanol g?1 glucose).  相似文献   
2.
Mangosteen extracts (ME) contain high levels of polyphenolic compounds and antioxidant activity. Protective effects of ME against β-amyloid peptide (Aβ), induced cytotoxicity have been reported. Here, we further studied the protective effects of ME against oxidative stress induced by hydrogen peroxide (H2O2) and polychlorinated biphenyls (PCBs), and demonstrated the protection against memory impairment in mice. The cytoprotective effects of ME were measured as cell viability and the reduction in ROS activity. In SK-N-SH cell cultures, 200 μg/ml ME could partially antagonize the effects of 150 or 300 µM H2O2 on cell viability, ROS level and caspase-3 activity. At 200, 400 or 800 µg/ml, ME reduced AChE activity of SK-N-SH cells to about 60% of the control. In vivo study, Morris water maze and passive avoidance tests were used to assess the memory of the animals. ME, especially at 100 mg/kg body weight, could improve the animal’s memory and also antagonize the effect of scopolamine on memory. The increase in ROS level and caspase-3 activity in the brain of scopolamine-treated mice were antagonized by the ME treatment. The study demonstrated cytoprotective effects of ME against H2O2 and PCB-52 toxicity and having AChE inhibitory effect in cell culture. ME treatment in mice could attenuate scopolamine-induced memory deficit and oxidative stress in brain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号