首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   38篇
  国内免费   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有100条查询结果,搜索用时 19 毫秒
1.
The 104 nucleotides long 3' terminal region of TMV RNA was shown previously to contain two pseudoknotted structures (Rietveld et al. (1984), EMBO J. 3, 2613-2619). We here present evidence for the occurrence, within the 204 nucleotides long 3' noncoding region, of another highly structured domain located immediately adjacent to the tRNA-like structure of 95 nucleotides (Joshi et al. (1985) Nucleic Acids Res. 13, 347-354). A model for the three-dimensional folding of this region, containing three more pseudoknots, is proposed on the basis of chemical modification and enzymatic digestion. The existence of these three consecutive pseudoknots was supported by sequence comparisons with the RNA from the related tobamoviruses TMV-L, CcTMV and CGMMV. Coaxial stacking of the six double helical segments involved gives rise to the formation of a 25 basepair long quasi-continuous double helix. The results show that the three-dimensional folding of the 3' non-translated region of tobamoviral RNAs is largely maintained by the formation of five pseudoknots. The organisation of this region in the RNA of the tobamovirus CcTMV suggests that recombinational events among aminoacylatable plant viral RNAs have to be considered.  相似文献   
2.
3.
4.
The genomic RNA of beet western yellows virus (BWYV) contains a potential translational frameshift signal in the overlap region of open reading frames ORF2 and ORF3. The signal, composed of a heptanucleotide slippery sequence and a downstream pseudoknot, is similar in appearance to those identified in retroviral RNAs. We have examined whether the proposed BWYV signal functions in frameshifting in three translational systems, i.c. in vitro in a reticulocyte lysate or a wheat germ extract and in vivo in E. coli. The efficiency of the signal in the eukaryotic system is low but significant, as it responds strongly to changes in either the slip sequence or the pseudoknot. In contrast, in E. coli there is hardly any response to the same changes. Replacing the slip sequence to the typical prokaryotic signal AAAAAAG yields more than 5% frameshift in E. coli. In this organism the frameshifting is highly sensitive to changes in the slip sequence but only slightly to disruption of the pseudoknot. The eukaryotic assay systems are barely sensitive to changes in either AAAAAAG or in the pseudoknot structure in this construct. We conclude that eukaryotic frameshift signals are not recognized by prokaryotes. On the other hand the typical prokaryotic slip sequence AAAAAAG does not lead to significant frameshifting in the eukaryote. In contrast to recent reports on the closely related potato leafroll virus (PLRV) we show that the frameshifting in BWYV is pseudoknot-dependent.  相似文献   
5.
6.
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast–endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.  相似文献   
7.
8.
The plant gene enod40 is highly conserved among legumes and also present in various non-legume species. It is presumed to play a central regulatory role in the Rhizobium–legume interaction, being expressed well before the initiation of cortical cell divisions resulting in nodule formation. Two small peptides encoded by enod40 mRNA as well as its secondary structure have been shown to be key elements in the signalling processes underlying nodule organogenesis. Here results concerning the secondary structure of mRNA of enod40 in soybean are presented. This study combined a theoretical approach, involving structure prediction and comparison, as well as structure probing. Our study indicates five conserved domains in enod40 mRNA among numerous leguminous species. Structure comparison suggests that some domains are also conserved in non-leguminous species and that an additional domain exists that was found only in leguminous species developing indeterminate nodules. Enzymatic and chemical probing data support the structure for three of the domains, and partially for the remaining two. The rest of the molecule appears to be less structured. Some of the domains include motifs, such as U-containing internal loops and bulges, which seem to be conserved. Therefore, they might be involved in the regulatory role of enod40 RNA.  相似文献   
9.
During bacterial protein synthesis, stalled ribosomes can be rescued by tmRNA, a molecule with both tRNA and mRNA features. The tRNA region of tmRNA has sequence similarity with tRNA(Ala) and also has a clover-leaf structure folded similarly as in canonical tRNAs. Here we propose the L-shape of tmRNA to be stabilized by two tertiary interactions between its D- and T-loop on the basis of phylogenetic and experimental evidence. Mutational analysis clearly demonstrates a tertiary interaction between G(13) and U(342). Strikingly, this in evolution conserved interaction is not primarily important for tmRNA alanylation and for binding to elongation factor Tu, but especially for a proper functioning of SmpB.  相似文献   
10.
Valine-accepting tRNA-like structures (TLSs) are found at the 3′ ends of the genomic RNAs of most plant viruses belonging to the genera Tymovirus, Furovirus, Pomovirus and Pecluvirus, and of one Tobamovirus species. Sequence alignment of these TLSs suggests the existence of a tertiary D-loop–T-loop interaction consisting of 2 bp, analogous to those in the elbow region of canonical tRNAs. The conserved G18·Ψ55 pair of regular tRNAs is found to covary in these TLSs between G·U (possibly also modified to G·Ψ) and A·G. We have mutated the relevant bases in turnip yellow mosaic virus (TYMV) and examined the mutants for symptom development on Chinese cabbage plants and for accumulation of genetic reversions. Development of symptoms is shown to rely on the presence of either A·G or G·U in the original mutants or in revertants. This finding supports the existence and functional importance of this tertiary interaction. The fact that only G·U and A·G are accepted at this position appears to result from steric and energetic limitations related to the highly compact nature of the elbow region. We discuss the implications of these findings for the various possible functions of the valine-accepting TLS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号