首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2002年   2篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Stable isotopes (13C, D) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean 13C; –51.5 ±7.1 and–56.5 ± 4.6 for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(– 63 ± 5). Large seasonal variation was observed in13C(32) in the rice paddies, whereas variationinD was much more smaller (20), indicating that variation in13C is due mainly to changes in methane production pathways.Values of 13C were lower in swamps (–66.1 ±5.1)than in rice paddies. The calculated contribution of acetate fermentation from13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). Din methane from Thai rice paddies (–324± 7 (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from–362 ± 5 (Mito: n=2) to –322 ± 8(Okinawa: n=3), due tohigher D in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).  相似文献   
2.
We studied the distribution of dissolved O2, CO2, CH4, and N2O in a coastal swamp system in Thailand with the goal to characterize the dynamics of these gases within the system. The gas concentrations varied spatially and seasonally in both surface and ground waters. The entire system was a strong sourcefor CO2 and CH4, and a possible sink for atmospheric N2O. Seasonal variation in precipitation primarily regulated the redox conditions in the system. However, distributions of CO2, CH4, and N2O in the river that received swamp waters were not always in agreement with redox conditions indicated by dissolvedO2 concentrations. Sulfate production through pyriteoxidation occurred in the swamp with thin peat layerunder aerobic conditions and was reflected by elevatedSO 4 2– /Cl in the river water. When SO 4 2– /Cl was high, CO2 and CH4 concentrations decreased, whereas the N2O concentration increased. The excess SO 4 2– in the river water was thus identified as a potential indicator for gas dynamics in this coastal swamp system.  相似文献   
3.
Yoshioka  T.  Ueda  S.  Miyajima  T.  Wada  E.  Yoshida  N.  Sugimoto  A.  Vijarnsorn  P.  Boonprakub  S. 《Limnology》2002,3(1):51-59
The distributions of organic matter in the tropical swamps in southern Thailand are reported. The concentrations of particulate and dissolved organic carbon (POC and DOC) in the Bang Nara River, which drains swamp forests and nearby paddy fields, were 2.9 ± 2.0 and 6.2 ± 1.3 mg C l−1, respectively. Although the variation was large, DOC concentration in the Bang Nara River seemed to be higher than POC in November 1992 (DOC/POC ratio, 2.8 ± 2.2). River waters from the upland areas were characterized by low POC and DOC concentrations as compared with Bang Nara River water. The δ13C values of POC and river sediments were useful to distinguish between organic matter originating in upland and swamp areas. It is suggested that the distributions of organic matter and its isotopic composition reflect the difference in drainage characteristics between lowland swamp and upland areas. Isotopic analyses of plant leaves and soils revealed that the swamp forest ecosystems were characterized by low δ13C and low δ15N values, which suggested low efficiency of water use by plants and large contributions of atmospheric deposition of nitrogen, respectively. Although CO2 recycling in the forest might be an important factor determining the δ13C values of understory plants, the main process in carbon metabolism of tropical swamp forests would be CO2 exchange between the atmosphere and forest canopy. Received: May 1, 2001 / Accepted: September 28, 2001  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号