首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856347篇
  免费   100764篇
  国内免费   549篇
  2018年   6954篇
  2016年   10310篇
  2015年   15880篇
  2014年   18006篇
  2013年   24982篇
  2012年   28789篇
  2011年   28651篇
  2010年   19211篇
  2009年   17937篇
  2008年   25835篇
  2007年   26524篇
  2006年   24977篇
  2005年   24131篇
  2004年   23875篇
  2003年   22886篇
  2002年   22322篇
  2001年   35729篇
  2000年   36074篇
  1999年   29151篇
  1998年   11309篇
  1997年   11706篇
  1996年   11234篇
  1995年   11015篇
  1994年   10847篇
  1993年   10676篇
  1992年   24512篇
  1991年   23665篇
  1990年   23263篇
  1989年   22554篇
  1988年   20787篇
  1987年   20375篇
  1986年   18736篇
  1985年   18816篇
  1984年   15777篇
  1983年   13749篇
  1982年   11176篇
  1981年   9962篇
  1980年   9427篇
  1979年   15036篇
  1978年   12162篇
  1977年   10975篇
  1976年   10328篇
  1975年   11239篇
  1974年   12060篇
  1973年   11813篇
  1972年   10574篇
  1971年   9813篇
  1970年   8405篇
  1969年   7967篇
  1968年   7168篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
4.
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the CbR290H mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.  相似文献   
5.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
6.
The growth of twelve methanotrophic strains within the genus Methylomonas, including the type strains of Methylomonas methanica and Methylomonas koyamae, was evaluated with 40 different variations of standard diluted nitrate mineral salts medium in 96-well microtiter plates. Unique profiles of growth preference were observed for each strain, showing a strong strain dependency for optimal growth conditions, especially with regards to the preferred concentration and nature of the nitrogen source. Based on the miniaturized screening results, a customized medium was designed for each strain, allowing the improvement of the growth of several strains in a batch setup, either by a reduction of the lag phase or by faster biomass accumulation. As such, the maintenance of fastidious strains could be facilitated while the growth of fast-growing Methylomonas strains could be further improved. Methylomonas sp. R-45378 displayed a 50 % increase in cell dry weight when grown in its customized medium and showed the lowest observed nitrogen and oxygen requirement of all tested strains. We demonstrate that the presented miniaturized approach for medium optimization is a simple tool allowing the quick generation of strain-specific growth preference data that can be applied downstream of an isolation campaign. This approach can also be applied as a first step in the search for strains with biotechnological potential, to facilitate cultivation of fastidious strains or to steer future isolation campaigns.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号