首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2001年   1篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有33条查询结果,搜索用时 109 毫秒
1.
Adoptive transfer of antiviral T cells enhances immune reconstitution and decreases infectious complications after stem cell transplantation. Information on number and function of antiviral T cells in stem cell grafts is scarce. We investigated (1) immunomodulatory effects of G-CSF on antiviral T cells, (2) the influence of apheresis, and (3) the optimal time point to collect antiviral cells.CMV-, EBV- and ADV-specific T cells were enumerated in 170 G-CSF-mobilized stem cell and 24 non-mobilized platelet donors using 14 HLA-matched multimers. T-cell function was evaluated by IFN-γ ELISpot and granzyme B secretion. Immunophenotyping was performed by multicolor flow cytometry.G-CSF treatment did not significantly influence frequency of antiviral T cells nor their in vitro expansion rate upon antigen restimulation. However, T-cell function was significantly impaired, as expressed by a mean reduction in secretion of IFN-γ (75% in vivo, 40% in vitro) and granzyme B (32% target-independent, 76% target-dependent) as well as CD107a expression (27%). Clinical follow up data indicate that the first CMV-reactivation in patients and with it the need for T-cell transfer occurs while the donor is still under the influence of G-CSF.To overcome these limitations, T-cell banking before mobilization or recruitment of third party donors might be an option to optimize T-cell production.  相似文献   
2.
Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein–protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.  相似文献   
3.
Chromosomal damage was detected previously in the recBCD mutants of the Antarctic bacterium Pseudomonas syringae Lz4W, which accumulated linear chromosomal DNA leading to cell death and growth inhibition at 4°C. RecBCD protein generally repairs DNA double‐strand breaks by RecA‐dependent homologous recombination pathway. Here we show that ΔrecA mutant of P. syringae is not cold‐sensitive. Significantly, inactivation of additional DNA repair genes ruvAB rescued the cold‐sensitive phenotype of ΔrecBCD mutant. The ΔrecA and ΔruvAB mutants were UV‐sensitive as expected. We propose that, at low temperature DNA replication encounters barriers leading to frequent replication fork (RF) arrest and fork reversal. RuvAB binds to the reversed RFs (RRFs) having Holliday junction‐like structures and resolves them upon association with RuvC nuclease to cause linearization of the chromosome, a threat to cell survival. RecBCD prevents this by degrading the RRFs, and facilitates replication re‐initiation. This model is consistent with our observation that low temperature‐induced DNA lesions do not evoke SOS response in P. syringae. Additional studies show that two other repair genes, radA (encoding a RecA paralogue) and recF are not involved in providing cold resistance to the Antarctic bacterium.  相似文献   
4.
RecD is essential for growth at low temperature in the Antarctic psychrotrophic bacterium Pseudomonas syringae Lz4W. To examine the essential nature of its activity, we analyzed wild-type and mutant RecD proteins with substitutions of important residues in each of the seven conserved helicase motifs. The wild-type RecD displayed DNA-dependent ATPase and helicase activity in vitro, with the ability to unwind short DNA duplexes containing only 5' overhangs or forked ends. Five of the mutant proteins, K229Q (in motif I), D323N and E324Q (in motif II), Q354E (in motif III) and R660A (in motif VI) completely lost both ATPase and helicase activities. Three other mutants, T259A in motif Ia, R419A in motif IV and E633Q in motif V exhibited various degrees of reduction in ATPase activity, but had no helicase activity. While all RecD proteins had DNA-binding activity, the mutants of motifs IV and V displayed reduced binding, and the motif II mutant showed a higher degree of binding to ssDNA. Significantly, only RecD variants with in vitro ATPase activity could complement the cold-sensitive growth of a recD-inactivated strain of P. syringae at 4 degrees C. These results suggest that the requirement for RecD at lower temperatures lies in its ATP-hydrolyzing activity.  相似文献   
5.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   
6.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
7.
8.
In order to examine the widely held hypothesis that the reticulum of proteins which covers the cytoplamsic surface of the human erythrocyte membrane controls cell stability and shape, we have assessed some of its properties. The reticulum, freed of the bilayer by extraction with Triton X-100, was found to be mechanically stable at physiological ionic strength but physically unstable at low ionic strength. The reticulum broke down after a characteristic lag period which decreased 500-fold between 0 degrees and 37 degrees C. The release of polypeptide band 4.1 from the reticulum preceded that of spectrin and actin, suggesting that band 4.1 might stabilize the ensemble but is not essential to its integrity. The time-course of breakdown was similar for ghosts, the reticulum inside of ghosts, and the isolated reticulum. However, at very low ionic strength, the reticulum was less stable within the ghost than when free; at higher ionic strength, the reverse was true. Over a wide range of conditions the membrane broke down to vesicles just as the reticulum disintegrated, presumably because the bilayer was mechanically stabilized by this network. The volume of both ghosts and naked reticula varied inversely and reversibly with ionic strength. The volume of the naked reticulum varied far more widely than the ghost, suggesting that its deformation was normally limited by the less extensible bilayer. The contour of the isolated reticulum was discoid and often dimpled or indented, as visualized in the fluorescence microscope after labeling of the ghosts with fluoroscein isothiocyanate. Reticula derived from ghosts which had lost the ability to crenate in isotonic saline were shriveled, even though the bilayer was smooth and expanded. Conversly, ghosts crenated by dinitrophenol yielded smooth, expanded reticula. We conclude that the reticulum is a durable, flexible, and elastic network which assumes and stabilizes the contour of the membrane but is not responsible for its crenation.  相似文献   
9.
Metagenomics is a magnificent tool to isolate genes from unknown/uncharacterized species and also from organisms that cannot be cultured. In this study, we constructed a metagenomic library from isolated DNA of soil samples collected from Palamuru University campus premises, in Mahabubnagar district of Andhra Pradesh, India. We isolated a novel lipase gene LipHim1, which has an open reading frame of 591 base pairs and encodes ~23 kDa protein consisting of 196 amino acids. The Lipase LipHim1 showed maximum 32% homology at the protein level with the extracellular Aeromonas hydrophila lipase (Class II, GDSL family) and was significantly different from all other known lipases. The isolated lipase catalyzed the hydrolysis of fatty acid esters of polyoxyethylene sorbitan such as Tween 60. Our results indicate that the isolated lipase gene is novel.  相似文献   
10.

Background  

Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号