首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   10篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
Urokinase plasminogen activator (uPA) and its high affinity receptor (uPAR) play crucial proteolytic and non-proteolytic roles in cancer metastasis. In addition to promoting plasmin-mediated degradation of extracellular matrix barriers, cell surface engagement of uPA through uPAR binding results in the activation of a suite of diverse cellular signal transduction pathways. Because uPAR is bound to the plasma membrane through a glycosyl-phosphatidylinositol anchor, these signalling sequelae are thought to occur through the formation of multi-protein cell surface complexes involving uPAR. To further characterize uPAR-driven protein complexes, we co-immunoprecipitated uPAR from the human ovarian cancer cell line, OVCA 429, and employed sensitive proteomic methods to identify the uPAR-associated proteins. Using this strategy, we identified several known, as well as numerous novel, uPAR associating proteins, including the epithelial restricted integrin, alphavbeta6. Reverse immunoprecipitation using anti-beta6 integrin subunit monoclonal antibodies confirmed the co-purification of this protein with uPAR. Inhibition of uPAR and/or beta6 integrin subunit using neutralizing antibodies resulted in the inhibition of uPA-mediated ERK 1/2 phosphorylation and subsequent cell proliferation. These data suggest that the association of beta6 integrin (and possibly other lynchpin cancer regulatory proteins) with uPAR may be crucial in co-transmitting uPA signals that induce cell proliferation. Our findings support the notion that uPAR behaves as a lynchpin in promoting tumorigenesis by forming functionally active multiprotein complexes.  相似文献   
2.
The presence of lignin has shown to play an important role in the enzymatic degradation of softwood. The adsorption of enzymes, and their constituent functional domains on the lignocellulosic material is of key importance to fundamental knowledge of enzymatic hydrolysis. In this study, we compared the adsorption of two purified cellulases from Trichoderma reesei, CBH I (Cel7A) and EG II (Cel5A) and their catalytic domains on steam pretreated softwood (SPS) and lignin using tritium labeled enzymes. Both CBH I and its catalytic domain exhibited a higher affinity to SPS than EG II or its catalytic domain. Removal of cellulose binding domain decreased markedly the binding efficiency. Significant amounts of CBH I and EG II also bound to isolated lignin. Surprisingly, the catalytic domains of the two enzymes of T. reesei differed essentially in the adsorption to isolated lignin. The catalytic domain of EG II was able to adsorb to alkaline isolated lignin with a high affinity, whereas the catalytic domain of CBH I did not adsorb to any of the lignins tested. The results indicate that the cellulose binding domain has a significant role in the unspecific binding of cellulases to lignin.  相似文献   
3.
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.  相似文献   
4.
In this study, the applicability of three modelling approaches was determined in an effort to describe complex relationships between process parameters and to predict the performance of an integrated process, which consisted of a fluidized bed bioreactor for Fe3+ regeneration and a gravity settler for precipitative iron removal. Self-organizing maps were used to visually evaluate the associations between variables prior to the comparison of two different modelling methods, the multiple regression modelling and artificial neural network (ANN) modelling, for predicting Fe(III) precipitation. With the ANN model, an excellent match between the predicted and measured data was obtained (R 2 = 0.97). The best-fitting regression model also gave a good fit (R 2 = 0.87). This study demonstrates that ANNs and regression models are robust tools for predicting iron precipitation in the integrated process and can thus be used in the management of such systems.  相似文献   
5.
Oxidatively modified low-density lipoproteins (Ox-LDL) and complement anaphylatoxins C3a and C5a are colocalized in atherosclerotic lesions. Anaphylatoxin C3a also binds and breaks bacterial lipid membranes and phosphatidylcholine liposomes. The role of oxidized lipid adducts in C3a binding to Ox-LDL and apoptotic cells was investigated. Recombinant human C3a bound specifically to low-density lipoprotein and bovine serum albumin modified with malondialdehyde (MDA) and malondialdehyde acetaldehyde (MAA) in chemiluminescence immunoassays. No binding was observed to native proteins, LDL oxidized with copper ions (CuOx-LDL), or phosphocholine. C3a binding to MAA-LDL was inhibited by two monoclonal antibodies specific for MAA-LDL. On agarose gel electrophoresis, C3a comigrated with MDA-LDL and MAA-LDL, but not with native LDL or CuOx-LDL. C3a bound to apoptotic cells in flow cytometry. C3a opsonized MAA-LDL and was taken up by J774A.1 macrophages in immunofluorescence analysis. Complement-activated human serum samples (n=30) showed increased C3a binding to MAA-LDL (P<0.001) and MDA-LDL (P<0.001) compared to nonactivated samples. The amount of C3a bound to MAA-LDL was associated with total complement activity, C3a desArg concentration, and IgG antibody levels to MAA-LDL. Proteins containing MDA adducts or MAA adducts may bind C3a in vivo and contribute to inflammatory processes involving activation of the complement system in atherosclerosis.  相似文献   
6.
Expression of ADAM12 is low in most normal tissues but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In this study, we found that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 seems to be dispensable for its tumor-promoting effect. Interestingly, we show that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence tumor progression, but that ADAM12 expression by tumor cells is necessary for tumor progression in these mice. This finding is consistent with our observation that in human breast carcinoma, ADAM12 is almost exclusively located in tumor cells and, only rarely, seen in the tumor-associated stroma. We hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, on the basis of the fact that TGF-β1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-β1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12 synthesis, and growth of these cells in vivo induced more than 200-fold increase in ADAM12 expression. Our observation that ADAM12 expression is significantly higher in the terminal duct lobular units (TDLU) adjacent to human breast carcinoma compared with TDLUs found in normal breast tissue supports our hypothesis that tumor-associated stroma triggers ADAM12 expression.  相似文献   
7.
A laccase from the thermophilic fungus Melanocarpus albomyces was shown to bind to softwood and pure microcrystalline cellulose. The binding isotherm fitted well the Langmuir type one-site binding model. The adsorption parameters indicated that M. albomyces laccase binds with high affinity to cellulose with a relatively low maximum binding capacity, as compared to the values for various cellulases. The binding was shown to be reversible and not influenced by non-specific protein or 0.1-0.5 M Na2SO4. No binding was detected with laccases from Trametes hirsuta or Mauginiella sp., which suggests that binding to cellulose is typical for only some laccases.  相似文献   
8.
The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3',5-dihydroxy-4',6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.  相似文献   
9.
Objective: Insulin resistance in obese subjects results in the impaired use of glucose by insulin‐sensitive tissues, e.g., skeletal muscle. In the present study, we determined whether insulin resistance in obesity is associated with an impaired ability of exercise to stimulate muscle blood flow, oxygen delivery, or glucose uptake. Research Methods and Procedures: Nine obese (body mass index = 36 ± 2 kg/m2) and 11 age‐matched nonobese men (body mass index = 22 ± 1 kg/m2) performed one‐legged isometric exercise during hyperinsulinemia. Rates of femoral muscle blood flow, oxygen consumption, and glucose uptake were measured simultaneously in both legs using [15O]H2O, [15O]O2, [18F]fluoro‐deoxy‐glucose, and positron emission tomography. Results: The obese subjects exhibited resistance to insulin stimulation of glucose uptake in resting muscle, regardless of whether glucose uptake was expressed per kilogram of femoral muscle mass (p = 0.001) or per the total mass of quadriceps femoris muscle. At similar workloads, oxygen consumption, blood flow, and glucose uptake were lower in the obese than the nonobese subjects when expressed per kilogram of muscle, but similar when expressed per quadriceps femoris muscle mass. Discussion: We conclude that obesity is characterized by insulin resistance of glucose uptake in resting skeletal muscle regardless of how glucose uptake is expressed. When compared with nonobese individuals at similar absolute workloads and under identical hyperinsulinemic conditions, the ability of exercise to increase muscle oxygen uptake, blood flow, and glucose uptake per muscle mass is blunted in obese insulin‐resistant subjects. However, these defects are compensated for by an increase in muscle mass.  相似文献   
10.
In order to survive a temperature downshift, bacteria have to sense the changing environment and adjust their metabolism and structure. Two-component signal transduction systems (TCSs) play a central role in sensing and responding to many different environmental stimuli. Although the nonproteolytic (group II) Clostridium botulinum represents a major hazard in chilled foods, the cold adaption mechanisms of group II C. botulinum organisms are not known. Here, we show that the CLO3403/CLO3404 TCS of C. botulinum E1 Beluga is involved in the cold shock response and growth at 12°C. Cold shock induced the expression of the genes encoding the histidine kinase (clo3403) and the response regulator (clo3404) by more than 100-fold after 5 h relative to their expression in a nonshocked culture at the corresponding time point. The involvement of CLO3403/CLO3404 in growth at low temperature was demonstrated by impaired growth of the insertional clo3403 and clo3404 knockout mutants at 12°C compared to the growth of the wild-type culture. Additionally, the inactivation of clo3403 had a negative effect on motility. The growth efficiency at 12°C of the TCS mutants and the motility of the kinase mutants were restored by introducing a plasmid harboring the operon of the CLO3403/CLO3404 TCS. The results suggest that the CLO3403/CLO3404 TCS is important for the cold tolerance of C. botulinum E1 Beluga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号