首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   7篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
  1994年   1篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有38条查询结果,搜索用时 187 毫秒
1.
Summary Defective natural killer (NK) cell populations from patients with chronic myelogenous leukemia (CML), that reacted with both HNK-1+ and B73.1+ antibodies, were obtained by a flluorescence-activated cell sorter (FACS). These fractions, along with NK fractions from normal donors which reacted with both antibodies, were expanded as bulk cultures or clones by limiting dilution, for 4 weeks in the presence of 10% interleukin 2 (IL 2), human type AB plasma, and irradiated human allogeneic mononuclear cells. Successfully established clones from patients with CML, with lytic activity against autologous and more differentiated neoplastic granulocytes, were generated more efficiently from B73.1+ than from HNK-1+ subsets. However, there were no significant differences among the generations of B73.1+ and HNK-1+ clones for both patients and normal donors with lytic activity against NK susceptible K-562 targets. Fresh myeloblast preparations from a blast crisis were found to be more susceptible to lysis by IL 2-proliferative B73.1+ and HNK-1+ clones than were fresh myelocyte preparations from a chronic phase CML patient, which were lytically susceptible to only B73.1+ clones. B73.1+ and HNK-1+ subsets from CML patients demonstrated major histocompatibility complex nonrestricted killing, and showed the following predominant phenotypes: B73.1+T3+T8+ or B73.1+T3+T8 from B73.1+ subsets; and HNK-1T3+T8+ (initially HNK-1+) from HNK-1+ subsets. In contrast, B73.1+ and HNK-1+ clones from normal donors showed the following predominant phenotypes: B73.1+T3T8; and HNK-1T3T8 or HNK-1T3T8+ (initially all HNK-1+). Short-term in vitro IL 2 or interferon treatment of fresh NK defective subsets from CML patients resulted in minimal cytotoxic augmentation. In contrast, defective NK cells from CML patients, whether HNK-1+ or B73.1+ subsets, proliferated with complete regeneration of cytolytic activity after a 3–4 week exposure to IL 2, but differed in phenotypic profiles as compared to those of normal donors. These observations imply that not only fresh defective NK cells but also the cytotoxically restored clones from CML patients are derived from different NK subsets and may represent undifferentiated forms of NK cells that may be arrested at an early stage of development by yet unknown mechanism(s). In vitro substantiation of autologous leukemia cell killing by IL 2-proliferative NK cell clones is encouraging and may allow for new in vivo immunotherapeutic modalities in CML patients.  相似文献   
2.
Lymphoid tumors induced by a recombinant murine retrovirus carrying the v-myc oncogene of avian MC29 virus were characterized. The Moloney murine leukemia virus myc oncogene (M-MuLV (myc], carried by an amphotropic MuLV helper, induced tumors in NIH Swiss and NFS/N mice after a relatively long latency (8 to 24 wk). Tumor masses appeared in the thymus, spleen, and lymph nodes. Flow cytometry of the tumor cells indicated that approximately 50% were positive for Thy 1.2. Most of these tumors also expressed one or more other cell surface markers of thymocytes and mature T cells (CD4, CD8). Southern blot hybridization revealed genomic rearrangements for the TCR beta genes. The TCR beta analysis suggested that the M-MuLV(myc)-induced Thy 1.2+ tumors were derived from somewhat less mature cells than tumors induced by M-MuLV, which is a classical non-acute retrovirus lacking an oncogene. The remainder of the M-MuLV(myc)-induced tumors were Thy 1.2-, but they were positive for Ly-5 (B220) and also for MAC-2. The Thy 1.2- tumors were characteristically located in the thymus. However, they were negative for TCR beta gene rearrangements. Some, but not all, of the Thy 1.2- tumors contained rearrangements for Ig genes. Additionally, they typically expressed mRNA specific for B but not for T cells. Thus, these thymic tumors had characteristics of the B cell lineage. Tumor transplantation experiments demonstrated that the Thy 1.2- tumor cells could reestablish in the thymus and spleen of irradiated hosts, and low level expression of the Thy 1 molecule was observed in the thymus but not the spleen on the first passage. After serial passage, one Thy 1- tumor altered its cell surface phenotype to Thy 1low B220-.  相似文献   
3.
Suppressor T lymphocytes from lepromatous leprosy skin lesions   总被引:13,自引:0,他引:13  
The immune response in leprosy forms a spectrum with lepromatous leprosy patients exhibiting specific unresponsiveness to antigens of Mycobacterium leprae. This unresponsiveness is thought to be related to the prevalence of T8-positive lymphocyte in these lepromatous lesions. To analyze the immunoregulatory function of these T8 cells, we developed simple procedures to extract lymphocytes from skin biopsy specimens of patients with leprosy. These lymphocytes were sorted for T8 and T4 positive cells, and cell lines were established by expansion with interleukin 2 (IL 2) and irradiated feeder cells. All T8 positive lines tested were positive for IL 2 receptors and HLA-DR determinants. These lines were additionally assayed for lepromin-induced suppression of the normal peripheral blood lymphocyte Con A proliferative response. Thirteen of 32 lines from six lepromatous patients showed significant suppressor activity, whereas nine lines from six tuberculoid patients and one line from normal peripheral blood failed to show suppression (p less than 0.001). Taken together, the finding of M. leprae-triggered suppressor cells within lepromatous skin lesions may in part explain the M. leprae unresponsiveness of lepromatous leprosy patients.  相似文献   
4.
A Moloney murine leukemia virus (M-MuLV) recombinant carrying the v-src gene of avian sarcoma virus was generated by the introduction of a cloned portion of v-src from Schmidt-Ruppin A avian sarcoma virus into a molecular clone of M-MuLV provirus at the recombinant DNA level. The v-src sequences (lacking a portion of the 5' end of v-src) were inserted into the p30 region of the M-MulV gag gene so that M-MuLV gag and v-src were in the same reading frame. Transfection of this chimeric clone, pMLV(src), into NIH 3T3 cells which were constitutively producing M-MuLV gag and pol protein resulted in the formation of foci of transformed cells. Infectious and transforming virus could be recovered from the transformed cells. This virus was designated M-MuLV(src). M-MuLV(src)-transformed cells contained two novel proteins of 78 and 90 kilodaltons. The 78-kilodalton protein, p78gag-src, contained both gag and src determinants, exhibited kinase activity in an immune kinase assay, and is probably a fusion of Pr65gag and src. The 90-kilodalton protein, which is of the appropriate size to be the gPr80gag fused to src, contained gag determinants as well as a V8 protease cleavage fragment typical of the carboxy terminus of avian sarcoma virus pp60src. However, it could not be immunoprecipitated with an anti-v-src serum. M-MuLV(src)-transformed cells showed elevated levels of intracellular phosphotyrosine in proteins, although the elevation was intermediate compared with cells transformed with wild-type v-src. M-MuLV and amphotropic murine leukemia virus pseudotypes of M-MuLV(src) were inoculated into newborn NIH Swiss mice. Inoculated mice developed solid tumors at the site of inoculation after 3 to 6 weeks, with most animals dying by 14 weeks. Histopathological analysis indicated that the solid tumors were mesenchymally derived fibrosarcomas that were both invasive and metastatic.  相似文献   
5.
6.
7.
Many of the steps in phylogenetic reconstruction can be confounded by “rogue” taxa—taxa that cannot be placed with assurance anywhere within the tree, indeed, whose location within the tree varies with almost any choice of algorithm or parameters. Phylogenetic consensus methods, in particular, are known to suffer from this problem. In this paper, we provide a novel framework to define and identify rogue taxa. In this framework, we formulate a bicriterion optimization problem, the relative information criterion, that models the net increase in useful information present in the consensus tree when certain taxa are removed from the input data. We also provide an effective greedy heuristic to identify a subset of rogue taxa and use this heuristic in a series of experiments, with both pathological examples from the literature and a collection of large biological data sets. As the presence of rogue taxa in a set of bootstrap replicates can lead to deceivingly poor support values, we propose a procedure to recompute support values in light of the rogue taxa identified by our algorithm; applying this procedure to our biological data sets caused a large number of edges to move from “unsupported” to “supported” status, indicating that many existing phylogenies should be recomputed and reevaluated to reduce any inaccuracies introduced by rogue taxa. We also discuss the implementation issues encountered while integrating our algorithm into RAxML v7.2.7, particularly those dealing with scaling up the analyses. This integration enables practitioners to benefit from our algorithm in the analysis of very large data sets (up to 2,500 taxa and 10,000 trees, although we present the results of even larger analyses).  相似文献   
8.
E Sinn  W Muller  P Pattengale  I Tepler  R Wallace  P Leder 《Cell》1987,49(4):465-475
We have derived and mated separate strains of transgenic mice that carry either the v-Ha-ras or the c-myc gene driven by the mouse mammary tumor virus (MMTV) promoter/enhancer. Mice carrying the MMTV/v-Ha-ras transgene manifest two distinct disturbances of cell growth. The first, a benign hyperplasia of the Harderian lacrimal gland, is diffuse, involves the entire gland, and likely requires only the abnormal action of the v-Ha-ras gene. The second involves the focal development of malignancies of mammary, salivary, and lymphoid tissue and likely requires additional somatic events. When the MMTV/v-Ha-ras and MMTV/c-myc strains are crossed to yield hybrid mice, their joint action results in a dramatic and synergistic acceleration of tumor formation. Since these tumors arise stochastically and are apparently monoclonal in origin, additional somatic events appear necessary for their full malignant progression, even in the presence of activated v-Ha-ras and c-myc transgenes.  相似文献   
9.
The effects of rearrangement and insertion of sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) were investigated. The alterations were made by recombinant DNA manipulations on a plasmid subclone containing an M-MuLV LTR. Promoter activity of altered LTRs was measured by fusion to the bacterial chloramphenicol acetyltransferase gene, followed by transient expression assay in NIH 3T3 cells. M-MuLV proviral organizations containing the altered LTRs were also generated, and infectious virus was recovered by transfection. Infectivity of the resulting virus was quantified by XC plaque assay, and pathogenicity was determined by inoculating neonatal NIH Swiss mice. Inversion of sequences in the U3 region containing the tandemly repeated enhancer sequences (-150 to -353 base pairs [bp]) reduced promoter activity approximately fivefold in the transient-expression assays. Infectious virus containing the inverted sequences (Mo- M-MuLV) showed a 20-fold reduction in relative infectivity compared with wild-type M-MuLV, but the virus still induced thymus-derived lymphoblastic lymphoma or leukemia in mice, with essentially the same kinetics as for wild-type M-MuLV. We previously derived an M-MuLV which carried inserted enhancer sequences from the F101 strain of polyomavirus (Mo + PyF101 M-MuLV) and showed that this virus is nonleukemogenic. In Mo + PyF101 M-MuLV, the PyF101 sequences were inserted between the M-MuLV promoter and the M-MuLV enhancers (at -150 bp). A new LTR was generated in which the PyF101 sequences were inserted to the 5' side of the M-MuLV enhancers (at -353 bp, PyF101 + Mo M-MuLV). The PyF101 + Mo LTR exhibited promoter activity similar (40 to 50%) to that of wild-type M-MuLV, and infectious PyF101 + Mo M-MuLV had high infectivity on NIH 3T3 cells (50% of wild type). In contrast to the nonleukemogenic Mo + PyF101 M-MuLV, PyF101 + Mo M-MuLV induced leukemia with kinetics similar to that of wild-type M-MuLV. Thus, the position of the PyF101 sequences relative to the M-MuLV LTR affected the biological behavior of the molecular construct. Furthermore, PyF101 + Mo M-MuLV induced a different spectrum of neoplastic disease. In comparison with wild-type M-MuLV, which induces a characteristic thymus-derived lymphoblastic lymphoma with extremely high frequency, PyF101 + Mo M-MuLV was capable of inducing both acute myeloid leukemia or thymus-derived lymphoblastic lymphoma, or both. Tumor DNA from both the PyF101 + Mo- and Mo- M-MuLV-inoculated animals contained recombinant proviruses with LTRs that differed from the initially inoculated virus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号