首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   4篇
  2022年   3篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2004年   9篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
Two experiments were conducted to determine the effects of 2-hydroxy-estradiol-17β (2---OH---E2; 0, 50 and 100 μM) and estradiol-17β (E2; 0, 25 and 50 μM) on prostaglandin (PG) E and PGF2α synthesis by day-10 pig blastocysts (day 0 is first day of estrus). Blastocysts were incubated in a modified Krebs-Ringer bicarbonate medium, supplemented with bovine serum albumin (4 mg/ml) and the vitamins and amino acids (essential and nonessential) in Minimum Essential Medium (without phenol red or antibiotics). The incubations were conducted at 39°C for three 2-h periods; the second and third periods included an E2 or catechol estrogen treatment. Release of PGF2α into the culture medium decreased (p<0.001) linearly with increasing concentrations of 2---H---E2 in both periods. Release of PGE was not affected by 2---OH---E2, therefore 2---OH---E2 increased (p<0.06) the PGE:PGF2α. When E2 was added to the medium, release of PGE was decreased (p<0.01) during the second and third periods. Release of PGF2α also was decreased (p<0.05) by E2 during period 2, but E2 did not alter the PGE:PGF2α. Content of PGs in blastocysts at recovery was less than 10% of the PGs released in vitro. Therefore, these studies demonstrate effects of both the primary and catechol forms of E2 on the synthesis of PGE and PGF2α. Catechol estrogens and E2 may inhibit PG synthesis and modify the PGE:PGF2α during the establishment of pregnancy in pigs.  相似文献   
2.
Probiotics and Antimicrobial Proteins - This study was conducted to evaluate different doses of two species of Bacillus (Bacillus licheniformis and Bacillus subtilis), on growth parameters,...  相似文献   
3.
Plasmonics - All-optical logic gates OR, XOR, AND, and NOT based on two-dimensional (2D) plasmonic metal-insulator-metal (MIM) coupled with an elliptical ring resonator (ERR) are presented,...  相似文献   
4.

Objective

Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH.

Methods

Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years.

Results

Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners.

Conclusion

These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization.  相似文献   
5.
Coloration in three of four species of the genus Neurergus including N. microspilotus is characterized by the presence of yellow spots on a dark skin, but there is no available information about changes in spot configuration, speed of development and degree of association between melanophore‐free region and the lateral line. In this study, spot numbers, spot circularity, spot size and spot asymmetry were studied during larval to adult growth in N. microspilotus during July 2012 to June 2015. The mean numbers of spots increased during the late larval stage till postmetamorphic period from 13.33 ± 3.77 to 22.53 ± 4.09 and reached 42.62 ± 4.06 in adults. At the same time, the extent of spots gradually decreased in size from 5.80 ± 1.00 to 3.57 ± 0.97 mm2 and reached 3.55 ± 1.42 mm2 in adults, but the spot circularity increased from 0.48 ± 0.23 to 0.78 ± 0.49 and reached 0.80 ± 0.15 in adults. In adults, the numbers, circularity, size and asymmetry of spots remain stable with little but non‐significant changes during the study period. Histological study shows that formation of a melanophore‐free region correlates with the development of the lateral line receptors. This study demonstrates that the effects of lateral line on chromatophores persist through middle larval stages but diminish as metamorphosis completes.  相似文献   
6.
7.
Heparin binding EGF-like growth factor (HB-EGF), encoded by the Hegfl gene, is considered as an important mediator of embryo-uterine interactions during implantation in mice. However, it is unknown whether HB-EGF is important for implantation in species with different steroid hormonal requirements. In mice and rats, maternal ovarian estrogen and progesterone (P(4)) are essential to implantation. In contrast, blastocyst implantation can occur in hamsters in the presence of P(4) alone. To ascertain whether HB-EGF plays any role in implantation in hamsters, we examined the expression, regulation and signaling of HB-EGF in the hamster embryo and uterus during the periimplantation period. We demonstrate that both the blastocyst and uterus express HB-EGF during implantation. Hegfl is expressed solely in the uterine luminal epithelium surrounding the blastocyst prior to and during the initiation of implantation. Hypophysectomized P(4)-treated pregnant hamsters also showed a similar pattern of implantation-specific Hegfl expression. These results suggest that uterine Hegfl expression at the implantation site is driven by either signals emanating from the blastocyst or maternal P(4), but not by maternal estrogen. However, in ovariectomized hamsters, uterine induction of Hegfl requires the presence of estrogen and activation of its nuclear receptor (ER), but not P(4). This observation suggests an intriguing possibility that an estrogenic or unidentified signal from the blastocyst is the trigger for uterine HB-EGF expression. An auto-induction of Hegfl in the uterus by blastocyst-derived HB-EGF is also a possibility. We further observed that HB-EGF induces autophosphorylation of ErbB1 and ErbB4 in the uterus and blastocyst. Taken together, we propose that HB-EGF production and signaling by the blastocyst and uterus orchestrate the 'two-way' molecular signaling to initiate the process of implantation in hamsters.  相似文献   
8.
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.  相似文献   
9.
Infertility and spontaneous pregnancy losses are an enduring problem to women's health. The establishment of pregnancy depends on successful implantation, where a complex series of interactions occurs between the heterogeneous cell types of the uterus and blastocyst. Although a number of genes are implicated in embryo-uterine interactions during implantation, genetic evidence suggests that only a small number of them are critical to this process. To obtain a global view and identify novel pathways of implantation, we used a dual screening strategy to analyze the expression of nearly 10,000 mouse genes by microarray analysis. Comparison of implantation and interimplantation sites by a conservative statistical approach revealed 36 up-regulated genes and 27 down-regulated genes at the implantation site. We also compared the uterine gene expression profile of progesterone-treated, delayed implanting mice to that of mice in which delayed implantation was terminated by estrogen. The results show up-regulation of 128 genes and down-regulation of 101 genes after termination of the delayed implantation. A combined analysis of these experiments showed specific up-regulation of 27 genes both at the implantation site and during uterine activation, representing a broad diversity of molecular functions. In contrast, the majority of genes that were decreased in the combined analysis were related to host immunity or the immune response, suggesting the importance of these genes in regulating the uterine environment for the implanting blastocyst. Collectively, we identified genes with recognized roles in implantation, genes with potential roles in this process, and genes whose functions have yet to be defined in this event. The identification of unique genetic markers for the onset of implantation signifies that genome-wide analysis coupled with functional assays is a promising approach to resolve the molecular pathways required for successful implantation.  相似文献   
10.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1-TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca(2+) influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP(2)) hydrolysis, generation of IP(3) and DAG, and IP(3)-induced Ca(2+) release from the intracellular Ca(2+) store via inositol trisphosphate receptor (IP(3)R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca(2+) entry mechanisms. The former is regulated by the emptying/refilling of internal Ca(2+) store(s) while the latter depends on PIP(2) hydrolysis (due to changes in PIP(2) per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca(2+) entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca(2+)](i) signals which are critical for precise control of downstream cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号