首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   6篇
  2018年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2006年   2篇
  2005年   3篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   3篇
  1987年   6篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1968年   2篇
  1875年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
Ca2+/calmodulin-dependent protein kinase III (Ca2+/CaM kinase III) phosphorylates a protein of Mr = 100,000 (the 100-kDa protein), a major substrate for Ca2+/CaM-dependent protein phosphorylation found in many mammalian tissues and cell lines (Nairn, A.C., Baghat, B., and Palfrey, H.C. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7939-7943). Treatment of PC12 cells with nerve growth factor (NGF) or forskolin resulted in a decrease in the depolarization-dependent phosphorylation of the 100-kDa protein in intact cells and in a decrease in the Ca2+/CaM-dependent phosphorylation of the 100-kDa protein in cytosolic extracts. In experiments using cytosolic extracts, the initial effect of NGF on the phosphorylation of the 100-kDa protein was observed in less than 1 h, was maximal (70% decrease) after 12 h, and began to recover after 24 h. The effect of forskolin was more rapid and the maximal effect was greater (90-95% decrease). Decreased Ca2+/CaM kinase III activity was also found in PC12 cells treated with epidermal growth factor, 2-chloroadenosine plus isobutylmethylxanthine, or dibutyryl cAMP. The effect of forskolin did not reverse unless it was removed. Cycloheximide blocked the recovery of Ca2+/CaM kinase III activity observed following the removal of forskolin but did not affect the ability of forskolin to reduce kinase activity. Short-term treatment with phorbol ester had little effect on Ca2+/CaM kinase III activity; long-term treatment with phorbol ester, which results in the disappearance of enzymatically detectable protein kinase C, had no effect on the ability of NGF or 2-chloroadenosine to reduce Ca2+/CaM kinase III activity. The level of the 100-kDa protein as determined by immunological techniques was not changed by any treatment. These results suggested that the effect of treatment of PC12 cells with NGF or forskolin was to reduce the level of Ca2+/CaM kinase III per se.  相似文献   
2.
To compare surface sarcolemmal with T-tubular distributions of [3H]saxitoxin (STX)- and [3H]nitrendipine (NTD)-binding sites, we centrifuged membrane vesicles from sheep and bovine ventricles on a 10-40% linear sucrose gradient from which fractions were assayed for STX and NTD binding; for markers of surface sarcolemma (ouabain-sensitive Na,K-ATPase activity, [3H]quinuclidinyl benzilate binding); and for markers of junctional sarcoplasmic reticulum known to be preferentially associated with T-tubules (ryanodine-sensitive Ca2+ uptake, calsequestrin, an Mr 300,000 putative phosphorylatable "foot" protein, and electron microscopically visible junctional sarcoplasmic reticulum-plasmalemma complexes). We identified three distinct peaks in the sucrose gradient, each characterized by significant high and low affinity STX- and high affinity NTD-binding: Peak I (approximately 19% sucrose), highly enriched in surface sarcolemma; Peak III (approximately 36% sucrose), enriched in junctional sarcoplasmic reticulum markers and hence in junctional sarcoplasmic reticulum complexes with T-tubule; and Peak II (approximately 27% sucrose), showing greatest specific STX binding and only moderate NTD binding, enriched in T-tubular membrane, unassociated with junctional sarcoplasmic reticulum. For ventricular myocytes, the ratio NTD sites/STX sites was 2.5 for surface sarcolemma, but only approximately 1.0 for T-tubules. Unlike data published for mammalian skeletal muscle, sheep and beef cardiac NTD receptors were not significantly more concentrated in T-tubular than in surface plasmalemma.  相似文献   
3.
The relationship between Na/K/2Cl cotransport activation in duck erythrocytes and binding of the diuretic [3H]bumetanide to isolated membranes from stimulated cells has been assessed. Cotransport was activated by either cAMP-dependent (norepinephrine) or -independent (fluoride, hypertonicity) pathways. Membranes isolated from unstimulated cells possessed no specific bumetanide binding. In the presence of norepinephrine, cotransport and saturable binding rose in parallel, reaching a maximum after 5-7 min. In membranes from maximally stimulated cells the K1/2 and Bmax for bumetanide binding were 100 nM and 1.7 pmol/mg protein, respectively. The diuretic binding properties of these membranes were characteristic of interactions of ligands with the Na/K/2Cl cotransporter: specific binding required the presence of all three cotransported ions (Na, K, and Cl), and the rank order of potency for diuretic competition with bumetanide for binding sites was benzmetanide greater than bumetanide greater than furosemide. The appearance of specific bumetanide binding was also seen in membranes from erythrocytes activated by non-cAMP-dependent stimuli, with an excellent temporal correlation between cotransport activation and diuretic binding. On removal of all stimuli both cotransport and bumetanide binding declined in parallel. Duck erythrocytes treated with norepinephrine in a solution containing 15 mM K+ swell to a new stable cell volume after 60 min, during which time cotransport becomes inoperative. Bumetanide binding to both whole cells and isolated membranes paralleled the decline in cotransport activity. It is concluded that bumetanide binding to isolated membranes faithfully reflects the state of activation of the Na/K/2Cl cotransporter in intact cells under a variety of conditions.  相似文献   
4.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
5.
Protein translation and degradation are critical for proper protein homeostasis, yet it remains unclear how these processes are dynamically regulated, or how they may directly balance or synergize with each other. An important translational control mechanism is the Ca2+/calmodulin-dependent phosphorylation of eukaryotic elongation factor-2 (eEF-2) by eukaryotic elongation factor-2 kinase (EF2K), which inhibits elongation of nascent polypeptide chains during translation. We previously described a reduction of EF2K activity in PC12 cells treated with NGF or forskolin. Here, we show that both forskolin- and IGF-1-mediated reductions of EF2K activity in PC12 cells are due to decreased EF2K protein levels, and this is attenuated by application of the proteasome inhibitor, MG132. We further demonstrate that proteasome-mediated degradation of EF2K occurs in response to A2A-type adenosine receptor stimulation, and that activation of protein kinase A (PKA) or phospho-mimetic mutation of the previously characterized PKA site, Ser-499, were sufficient to induce EF2K turnover in PC12 cells. A similar EF2K degradation mechanism was observed in primary neurons and HEK cells. Expression of a dominant-negative form of Cul1 in HEK cells demonstrated that EF2K levels are regulated by an SCF-type ubiquitin E3 ligase. Specifically, EF2K binds to the F-box proteins, βTRCP1 and βTRCP2, and βTRCP regulates EF2K levels and polyubiquitylation. We propose that the proteasomal degradation of EF2K provides a mechanistic link between activity-dependent protein synthesis and degradation.  相似文献   
6.
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ~200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.  相似文献   
7.

Background

Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors. High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive.

Results

Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca2+)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca2+ concentration [Ca2+] difference between bulk cytosolic and the sub-plasma membrane rim.

Conclusion

This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane. Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation. Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs affecting the translocation process.  相似文献   
8.
9.
Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr-/- mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.  相似文献   
10.
Abstract: The ability of various stimuli to convert Ca2+/calmodulin-dependent protein kinase II (CaMKII) into a Ca2+-independent (autonomous) form was examined in cultured embryonic rat hippocampal pyramidal neurons. The most effective stimulation by far was observed when cells were equilibrated in buffer containing low extracellular [Ca2+] ([Ca2+]o) (~50 nM) and then shifted to normal [Ca2+]o (~1.26 mM) by addition of CaCl2 (referred to as “Ca2+ stimulation”). Virtually complete (>90%) conversion of the kinase to the autonomous form occurred within 30–50 s, with a return to baseline within 5 min. By contrast, depolarization of cells with high [K+] or treatment with glutamate or a Ca2+ ionophore caused insignificant increases (<10%) in levels of the autonomous form. The Ca2+-stimulated increase in CaMKII autonomy coincided with a two- to threefold increase in kinase subunit phosphorylation. In the first 40 s of Ca2+ stimulation, 32P incorporation into the immunoprecipitated subunits of CaMKII occurred exclusively on threonine residues, including Thr286Thr287 of the α/β subunits. Longer incubation of cells resulted in a decline of phosphothreonine content, whereas levels of phosphoserine-containing peptides showed a significant increase. The activation of CaMKII by Ca2+ stimulation was accompanied by only a small rise in intracellular [Ca2+]. Inhibitor studies showed that Na+-dependent action potentials and Ca2+ influx through glutamate receptors or voltage-sensitive Ca2+ channels did not contribute to the activation. Moreover, CaMKII was not activated by extracellular addition of other cations, including Mn2+, Mg2+, Co2+, or Gd3+. Although the mechanism of Ca2+ stimulation is presently unclear, it may involve either activation of extracellular calcium receptors or capacitative calcium entry. The dramatic rise in CaMKII autonomy and the Ca2+ selectivity of the response suggest a direct and specific relationship between [Ca2+]o and the state of activation of the kinase in intact neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号