首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2018年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The purpose of this research was to develop microemulsions (ME) and microemulgels (MG) for enhancing transdermal delivery of Kaempferia parviflora (KP) extract. The methoxyflavones were used as markers. Various formulations of ME and MG containing 10% w/v KP extract were prepared, and the in vitro skin permeation and deposition were investigated. The potential ME system containing oleic acid (5% w/v), Tween 20 (20% w/v), PG (40% w/v), and water (35% w/v) was successfully formulated. ME with 10% w/v limonene (ME-L10%) showed higher methoxyflavones flux than ME-L5%, ME-L1%, ME without limonene, and KP extract in water, respectively. ME-L10% was selected for adding a gelling agent to form microemulgels (MG-L10%). However, the high viscosity of the gel formulation might control the diffusion of the compound from gel layer into the skin. Therefore, the liquid formulation provided potential ME droplets to deliver KP extract through the skin. Limonene also plays an effective role on the skin permeation, in which the histological image of the skin treated with ME-L10% exhibited larger space of each flattened keratinocyte layer in the stratum corneum compared to the skin treated with KP extract in water. Moreover, ME-L10% showed good stability. Therefore, ME-L10% was a potential formulation for improving transdermal delivery of KP extract.  相似文献   
2.
Diabetic nephropathy (DN) is a major life-threatening complication of diabetes. Renal lesions affect glomeruli and tubules, but the pathogenesis is not completely understood. Phospholipids and glycolipids are molecules that carry out multiple cell functions in health and disease, and their role in DN pathogenesis is unknown. We employed high spatial resolution MALDI imaging MS to determine lipid changes in kidneys of eNOS−/− db/db mice, a robust model of DN. Phospholipid and glycolipid structures, localization patterns, and relative tissue levels were determined in individual renal glomeruli and tubules without disturbing tissue morphology. A significant increase in the levels of specific glomerular and tubular lipid species from four different classes, i.e., gangliosides, sulfoglycosphingolipids, lysophospholipids, and phosphatidylethanolamines, was detected in diabetic kidneys compared with nondiabetic controls. Inhibition of nonenzymatic oxidative and glycoxidative pathways attenuated the increase in lipid levels and ameliorated renal pathology, even though blood glucose levels remained unchanged. Our data demonstrate that the levels of specific phospho- and glycolipids in glomeruli and/or tubules are associated with diabetic renal pathology. We suggest that hyperglycemia-induced DN pathogenic mechanisms require intermediate oxidative steps that involve specific phospholipid and glycolipid species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号