首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
排序方式: 共有21条查询结果,搜索用时 515 毫秒
1.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT(1A) receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT(1A) receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT(1A) receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT(1A) receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT(1A) receptor function.  相似文献   
2.
The genomic era has seen a remarkable increase in the number of genomes being sequenced and annotated. Nonetheless, annotation remains a serious challenge for compositionally biased genomes. For the preliminary annotation, popular nucleotide and protein comparison methods such as BLAST are widely employed. These methods make use of matrices to score alignments such as the amino acid substitution matrices. Since a nucleotide bias leads to an overall bias in the amino acid composition of proteins, it is possible that a genome with nucleotide bias may have introduced atypical amino acid substitutions in its proteome. Consequently, standard matrices fail to perform well in sequence analysis of these genomes. To address this issue, we examined the amino acid substitution in the AT-rich genome of Plasmodium falciparum, chosen as a reference and reconstituted a substitution matrix in the genome's context. The matrix was used to generate protein sequence alignments for the parasite proteins that improved across the functional regions. We attribute this to the consistency that may have been achieved amid the target and background frequencies calculated exclusively in our study. This study has important implications on annotation of proteins that are of experimental interest but give poor sequence alignments with standard conventional matrices.  相似文献   
3.
Sphingolipids are essential components of eukaryotic cell membranes. We recently showed that the function of the serotonin1A receptor is impaired upon metabolic depletion of sphingolipids using fumonisin B1 (FB1), a specific inhibitor of ceramide synthase. Serotonin1A receptors belong to the family of G-protein coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral and developmental functions. Since function and dynamics of membrane receptors are often coupled, we monitored the lateral dynamics of the serotonin1A receptor utilizing fluorescence recovery after photobleaching (FRAP) under these conditions. Our results show an increase in mobile fraction of the receptor upon sphingolipid depletion, while the diffusion coefficient of the receptor did not exhibit any significant change. These novel results constitute the first report on the effect of sphingolipid depletion on the mobility of the serotonin1A receptor. Our results assume greater relevance in the broader context of the emerging role of receptor mobility in understanding cellular signaling.  相似文献   
4.
The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, α-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis.  相似文献   
5.
Glycosphingolipids are essential components of eukaryotic cell membranes and are involved in the regulation of cell growth, differentiation, and neoplastic transformation. In this work, we have modulated glycosphingolipid levels in CHO cells stably expressing the human serotonin1A receptor by inhibiting the activity of glucosylceramide synthase using (±)‐threo‐1‐phenyl‐2‐decanoylamino‐3‐morpholino‐1‐propanol (PDMP), a commonly used inhibitor of the enzyme. Serotonin1A receptors belong to the family of G‐protein‐coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral, and developmental functions. We explored the function of the serotonin1A receptor under glycosphingolipid‐depleted condition by monitoring ligand‐binding activity and G‐protein coupling of the receptor. Our results show that ligand binding of the receptor is impaired under these conditions although the efficiency of G‐protein coupling remains unaltered. The expression of the receptor at the cell membrane appears to be reduced. Interestingly, our results show that the effect of glycosphingolipids on ligand binding caused by metabolic depletion of these lipids is reversible. These novel results demonstrate that glycosphingolipids are necessary for the function of the serotonin1A receptor. We discuss possible mechanisms of specific interaction of glycosphingolipids with the serotonin1A receptor that could involve the proposed ‘sphingolipid‐binding domain’.  相似文献   
6.
Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI''s utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics.This is a PLOS Computational Biology Software Article.  相似文献   
7.
8.
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   
9.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intra-macrophage protozoan parasite Leishmania donovani. The molecular mechanisms involved in internalization of Leishmania are still poorly understood. Amphotericin B and its formulations are considered as the best existing drugs against visceral leishmaniasis and are being increasingly used. The reason for its antileishmanial activity is believed to be its ability to bind ergosterol found in parasite membranes. In case of in vivo amphotericin B treatment, both host macrophages and parasites are exposed to amphotericin B. The effect of amphotericin B treatment could therefore be due to a combination of its interaction with both sterols i.e., ergosterol of Leishmania and cholesterol of host macrophages. We report here that cholesterol complexation by amphotericin B markedly inhibits binding of L. donovani promastigotes to macrophages. These results represent one of the first reports on the effect of amphotericin B on the binding of Leishmania parasites to host macrophages. Importantly, these results offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies that employ sterol-complexing agents such as amphotericin B to treat leishmaniasis.  相似文献   
10.
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes and constitute ~1–2% of the human genome. GPCRs have emerged as major targets for the development of novel drug candidates in all clinical areas due to their involvement in the generation of multitude of cellular responses. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. This effect could either be due to specific molecular interaction between cholesterol and GPCR, or due to alterations in the membrane physical properties induced by cholesterol. Alternatively, membrane cholesterol could modulate receptor function by occupying the ‘nonannular’ sites around the receptor. In this review, we have highlighted the nature of cholesterol dependence of GPCR function taking a few known examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号