首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2022年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.

Background

Adverse events (AEs) of second line anti-tuberculosis drugs (SLDs) are relatively well documented. However, the actual burden has rarely been described in detail in programmatic settings. We investigated the occurrence of these events in the national cohort of multidrug-resistant tuberculosis (MDR-TB) patients in Nigeria.

Method

This was a retrospective, observational cohort study, using pharmacovigilance data systematically collected at all MDR-TB treatment centers in Nigeria. Characteristics of AEs during the intensive phase treatment were documented, and risk factors for development of AEs were assessed.

Results

Four hundred and sixty patients were included in the analysis: 62% were male; median age was 33 years [Interquartile Range (IQR):28–42] and median weight was 51 kg (IQR: 45–59). Two hundred and three (44%) patients experienced AEs; four died of conditions associated with SLD AEs. Gastro-intestinal (n = 100), neurological (n = 75), ototoxic (n = 72) and psychiatric (n = 60) AEs were the most commonly reported, whereas ototoxic and psychiatric AEs were the most debilitating. Majority of AEs developed after 1–2 months of therapy, and resolved in less than a month after treatment. Some treatment centers were twice as likely to report AEs compared with others, highlighting significant inconsistencies in reporting at different treatment centers. Patients with a higher body weight had an increased risk of experiencing AEs. No differences were observed in risk of AEs between HIV-infected and uninfected patients. Similarly, age was not significantly associated with AEs.

Conclusion

Patients in the Nigerian MDR-TB cohort experienced a wide range of AEs, some of which were disabling and fatal. Early identification and prompt management as well as standardized reporting of AEs at all levels of healthcare, including the community is urgently needed. Safer regimens for drug-resistant TB with the shortest duration are advocated.  相似文献   
2.
Human adenovirus has evolved to infect and replicate in terminally differentiated human epithelial cells, predominantly those within the airway, the gut, or the eye. To overcome the block to viral DNA replication present in these cells, the virus expresses the Early 1A proteins (E1A). These immediate early proteins drive cells into S-phase and induce expression of all other viral early genes. During infection, several E1A isoforms are expressed with proteins of 289, 243, 217, 171, and 55 residues being present for human adenovirus type 5. Here we examine the contribution that the two largest E1A isoforms make to the viral life cycle in growth-arrested normal human fibroblasts. Viruses that express E1A289R were found to replicate better than those that do not express this isoform. Importantly, induction of several viral genes was delayed in a virus expressing E1A243R, with several viral structural proteins undetectable by western blot. We also highlight the changes in E1A isoforms detected during the course of viral infection. Furthermore, we show that viral DNA replication occurs more efficiently, leading to higher number of viral genomes in cells infected with viruses that express E1A289R. Finally, induction of S-phase specific genes differs between viruses expressing different E1A isoforms, with those having E1A289R leading to, generally, earlier activation of these genes. Overall, we provide an overview of adenovirus replication using modern molecular biology approaches and further insights into the contribution that E1A isoforms make to the life cycle of human adenovirus in arrested human fibroblasts.  相似文献   
3.
Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule.  相似文献   
4.
Liquid, injectable hydrophobic polymers are potentially useful as depot systems for localized drug delivery. Low molecular weight polymers of 5-ethylene ketal ε-caprolactone and copolymers of this monomer with D,L-lactide were prepared and their properties assessed with respect to their suitability for this purpose. The polymers were amorphous and of low viscosity, and the viscosity was adjustable by choice of initiator and/or by copolymerizing with D,L-lactide. Lower viscosity polymers were attained by using 350 Da methoxy poly(ethylene glycol) as an initiator in comparison to octan-1-ol, while copolymerization with D,L-lactide increased viscosity. The initiator used had no significant effect on the rate of mass loss in vitro, and copolymers with D,L-lactide (DLLA) degraded faster than 5-ethylene ketal ε-caprolactone (EKC) homopolymers. For the EKC-based polymers, a nearly constant degradation rate was observed. This finding was attributed to the hydrolytic susceptibility of the EKC-EKC ester linkage, which was comparable to that of DLLA-DLLA, coupled with a higher molecular weight of the water-soluble degradation product and the low initial molecular weight of the EKC-based polymers. Cytotoxicity of the hydrolyzed EKC monomer to 3T3 fibroblast cells was comparable to that of ε-caprolactone, suggesting that polymers prepared from EKC may be well tolerated upon in vivo implantation.  相似文献   
5.
The activities of phosphatases and other biochemical parameters were examined in rats treated with isosaline leaf and stem-bark extracts of Harungana madagascariensis (L). Results show that both the leaf and stem-bark extracts significantly increased the activities of serum and liver alkaline phosphatase, liver acid phosphatase, liver and kidney glucose-6-phosphatase, fructose-1,6-diphosphatase and glycogen in the treated rats. While the stem-bark extract significantly elevated the activities of fructose-1,6-diphosphatase and glycogen in the kidney, these biochemical parameters were not affected by treatment with the leaf extract. The activity of serum acid phosphatase was unaffected by the two extracts. The results obtained clearly show that these extracts caused a marked increase in gluconeogenesis in the liver and kidney of the treated rats. While the stem-bark extract increased gluconeogenesis in both liver and kidney, the leaf extract caused an increase in gluconeogenesis only in the liver. The increased serum alkaline phosphatase activity caused by these extracts may, aside from having other tissues contributing to it, be due to damage caused by these extracts to the hepatocytes. The extent of pathological changes as well as the implications of these findings to folklore medicine requires further investigation.  相似文献   
6.
The toxicity profile of the aqueous methanolic extract of Berlina grandiflora (BG) stem bark was studied in rats. The rats were administered graded doses (125-500 mg/kg p.o) of the extract daily for 21 days and the effects on body weight, organ weight, clinical signs, gross pathology, hematology, histology and serum biochemical parameters were measured. The relative weights of the heart, liver, kidneys and lungs of treated rats were unaffected but there were significant changes in the relative weights of the spleen and testes. The packed cell volume and hemoglobin concentrations were slightly reduced whereas total leucocytes counts were increased remarkably. Alkaline phosphatase and Creatine Kinase levels were reduced in all the groups but Glutamate oxaloacetate was significantly elevated. Total proteins and albumin levels remained normal. BG elicited a significant increase in gamma glutamyl transferase concentrations at 250 mg/kg. No significant changes occurred in urea, uric acid and BUN concentrations but calcium levels shot up remarkably. Histological findings did not reveal any treatment-related effects. The acute toxicity LD50 was estimated to be >2000 mg/kg but dose-related mortality rates of 16.7, 33.4 and 50% were observed during the sub-acute toxicity studies. These findings have once more highlighted the limitations of acute toxicity LD50 testing and suggest that BG may exert varied toxicological effects when administered orally in rats.  相似文献   
7.
8.
Low molecular weight poly(5-ethylene ketal ε-caprolactone-co-D,L-lactide) (PEKCDLLA) is being considered as a viscous liquid, injectable depot for localized drug delivery. This polymer degrades in vitro via surface erosion, which is potentially advantageous for the proposed application. However, the in vivo degradation rate and mechanism, and tissue response, to polymers based on 5-ethylene ketal ε-caprolactone have not yet been reported. The purpose of this study was to measure the in vivo weight loss and change in polymer properties and assess the tissue response to PEKCDLLA after subcutaneous injection in rats. The tissue response was assessed histologically using Masson's trichrome staining and immunohistochemically by staining for CD68 positive cells. The polymer lost weight with time in a nearly linear fashion but did not exhibit significant changes in number average molecular weight, polydispersity index, and glass transition temperature or monomer ratio, consistent with a surface erosion process. The tissue response to the polymer was moderate and comparable to that reported in the literature for other degradable polymers used in clinical applications. These findings indicate that PEKCDLLA is a promising candidate for injectable drug delivery.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号