首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375519篇
  免费   40815篇
  国内免费   177篇
  2018年   3504篇
  2017年   3266篇
  2016年   4489篇
  2015年   5572篇
  2014年   6704篇
  2013年   9364篇
  2012年   10518篇
  2011年   10809篇
  2010年   7358篇
  2009年   6838篇
  2008年   9710篇
  2007年   9881篇
  2006年   9591篇
  2005年   9189篇
  2004年   9033篇
  2003年   8802篇
  2002年   8463篇
  2001年   20691篇
  2000年   20746篇
  1999年   15866篇
  1998年   4627篇
  1997年   4891篇
  1996年   4495篇
  1995年   4202篇
  1994年   4172篇
  1993年   4274篇
  1992年   12442篇
  1991年   12339篇
  1990年   11863篇
  1989年   11476篇
  1988年   10702篇
  1987年   10019篇
  1986年   9115篇
  1985年   8967篇
  1984年   7129篇
  1983年   6221篇
  1982年   4426篇
  1981年   3969篇
  1980年   3746篇
  1979年   6610篇
  1978年   5098篇
  1977年   4674篇
  1976年   4172篇
  1975年   4823篇
  1974年   5077篇
  1973年   5088篇
  1972年   4479篇
  1971年   4122篇
  1970年   3658篇
  1969年   3592篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   
4.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
5.
6.
7.
Rapid advances in mass spectrometry have allowed for estimates of absolute concentrations across entire proteomes, permitting the interrogation of many important biological questions. Here, we focus on a quantitative aspect of human cancer cell metabolism that has been limited by a paucity of available data on the abundance of metabolic enzymes. We integrate data from recent measurements of absolute protein concentration to analyze the statistics of protein abundance across the human metabolic network. At a global level, we find that the enzymes in glycolysis comprise approximately half of the total amount of metabolic proteins and can constitute up to 10% of the entire proteome. We then use this analysis to investigate several outstanding problems in cancer metabolism, including the diversion of glycolytic flux for biosynthesis, the relative contribution of nitrogen assimilating pathways, and the origin of cellular redox potential. We find many consistencies with current models, identify several inconsistencies, and find generalities that extend beyond current understanding. Together our results demonstrate that a relatively simple analysis of the abundance of metabolic enzymes was able to reveal many insights into the organization of the human cancer cell metabolic network.  相似文献   
8.
A diversity of tools is available for identification of variants from genome sequence data. Given the current complexity of incorporating external software into a genome analysis infrastructure, a tendency exists to rely on the results from a single tool alone. The quality of the output variant calls is highly variable however, depending on factors such as sequence library quality as well as the choice of short-read aligner, variant caller, and variant caller filtering strategy. Here we present a two-part study first using the high quality ‘genome in a bottle’ reference set to demonstrate the significant impact the choice of aligner, variant caller, and variant caller filtering strategy has on overall variant call quality and further how certain variant callers outperform others with increased sample contamination, an important consideration when analyzing sequenced cancer samples. This analysis confirms previous work showing that combining variant calls of multiple tools results in the best quality resultant variant set, for either specificity or sensitivity, depending on whether the intersection or union, of all variant calls is used respectively. Second, we analyze a melanoma cell line derived from a control lymphocyte sample to determine whether software choices affect the detection of clinically important melanoma risk-factor variants finding that only one of the three such variants is unanimously detected under all conditions. Finally, we describe a cogent strategy for implementing a clinical variant detection pipeline; a strategy that requires careful software selection, variant caller filtering optimizing, and combined variant calls in order to effectively minimize false negative variants. While implementing such features represents an increase in complexity and computation the results offer indisputable improvements in data quality.  相似文献   
9.
In a typical auditory scene, sounds from different sources and reflective surfaces summate in the ears, causing spatial cues to fluctuate. Prevailing hypotheses of how spatial locations may be encoded and represented across auditory neurons generally disregard these fluctuations and must therefore invoke additional mechanisms for detecting and representing them. Here, we consider a different hypothesis in which spatial perception corresponds to an intermediate or sub-maximal firing probability across spatially selective neurons within each hemisphere. The precedence or Haas effect presents an ideal opportunity for examining this hypothesis, since the temporal superposition of an acoustical reflection with sounds arriving directly from a source can cause otherwise stable cues to fluctuate. Our findings suggest that subjects’ experiences may simply reflect the spatial cues that momentarily arise under various acoustical conditions and how these cues are represented. We further suggest that auditory objects may acquire “edges” under conditions when interaural time differences are broadly distributed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号