首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2163篇
  免费   110篇
  2022年   5篇
  2021年   20篇
  2020年   11篇
  2019年   20篇
  2018年   27篇
  2017年   34篇
  2016年   51篇
  2015年   70篇
  2014年   80篇
  2013年   139篇
  2012年   129篇
  2011年   141篇
  2010年   95篇
  2009年   84篇
  2008年   169篇
  2007年   145篇
  2006年   163篇
  2005年   147篇
  2004年   137篇
  2003年   144篇
  2002年   146篇
  2001年   21篇
  2000年   14篇
  1999年   22篇
  1998年   29篇
  1997年   30篇
  1996年   21篇
  1995年   21篇
  1994年   5篇
  1993年   19篇
  1992年   12篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   10篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   12篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1973年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2273条查询结果,搜索用时 15 毫秒
1.
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.  相似文献   
2.
3.
4.
Fhod3 is a cardiac member of the formin family proteins that play pivotal roles in actin filament assembly in various cellular contexts. The targeted deletion of mouse Fhod3 gene leads to defects in cardiogenesis, particularly during myofibrillogenesis, followed by lethality at embryonic day (E) 11.5. However, it remains largely unknown how Fhod3 functions during myofibrillogenesis. In this study, to assess the mechanism whereby Fhod3 regulates myofibrillogenesis during embryonic cardiogenesis, we generated transgenic mice expressing Fhod3 selectively in embryonic cardiomyocytes under the control of the β-myosin heavy chain (MHC) promoter. Mice expressing wild-type Fhod3 in embryonic cardiomyocytes survive to adulthood and are fertile, whereas those expressing Fhod3 (I1127A) defective in binding to actin die by E11.5 with cardiac defects. This cardiac phenotype of the Fhod3 mutant embryos is almost identical to that observed in Fhod3 null embryos, suggesting that the actin-binding activity of Fhod3 is crucial for embryonic cardiogenesis. On the other hand, the β-MHC promoter-driven expression of wild-type Fhod3 sufficiently rescues cardiac defects of Fhod3-null embryos, indicating that the Fhod3 protein expressed in a transgenic manner can function properly to achieve myofibril maturation in embryonic cardiomyocytes. Using the transgenic mice, we further examined detailed localization of Fhod3 during myofibrillogenesis in situ and found that Fhod3 localizes to the specific central region of nascent sarcomeres prior to massive rearrangement of actin filaments and remains there throughout myofibrillogenesis. Taken together, the present findings suggest that, during embryonic cardiogenesis, Fhod3 functions as the essential reorganizer of actin filaments at the central region of maturating sarcomeres via the actin-binding activity of the FH2 domain.  相似文献   
5.
Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23°C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5–20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.  相似文献   
6.
Cytosine arabinoside (AraC) is a nucleoside analog that produces significant neurotoxicity in cancer patients. The mechanism by which AraC causes neuronal death is a matter of some debate because the conventional understanding of AraC toxicity requires incorporation into newly synthesized DNA. Here we demonstrate that AraC-induced apoptosis of cultured cerebral cortical neurons is mediated by oxidative stress. AraC-induced cell death was reduced by treatment with several different free-radical scavengers (N-acetyl-L-cysteine, dipyridamole, uric acid, and vitamin E) and was increased following depletion of cellular glutathione stores. AraC induced the formation of reactive oxygen species in neurons as measured by an increase in the fluorescence of the dye 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate. AraC produced DNA single-strand breaks as measured by single-cell gel electrophoresis and the level of DNA strand breakage was reduced by treatment with the free radical scavengers. These data support a model in which AraC induces neuronal apoptosis by provoking the generation of reactive oxygen species, causing oxidative DNA damage and initiating the p53-dependent apoptotic program. These observations suggest the use of antioxidant therapies to reduce neurotoxicity in AraC chemotherapeutic regimens.  相似文献   
7.
We have reported recently that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+, K(+)-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. Here we examined the involvement of a GTP-binding protein(s) in PGE receptor-induced responses by using NaF. In the presence of Ca2+ in the medium, NaF stimulated the formation of all three inositol phosphates, i.e., inositol monophosphate, bisphosphate, and trisphosphate, linearly over 30 min in a dose-dependent manner (15-30 mM). This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. NaF also induced catecholamine release from chromaffin cells, and the dependency of stimulation of the release on NaF concentration was well correlated with those of NaF-enhanced inositol phosphate formation and increase in cytosolic free Ca2+. Although the effect of NaF on PGE2-induced catecholamine release in the presence of ouabain was additive at concentrations below 20 mM, there was no additive effect at 25 mM NaF. Furthermore, the time course of catecholamine release stimulated by 20 mM NaF in the presence of ouabain was quite similar to that by 1 microM PGE2, and both stimulations were markedly inhibited by amiloride, with half-maximal inhibition at 10 microM. Pretreatment of the cells with pertussis toxin did not prevent, but rather enhanced, PGE2-induced catecholamine release over the range of concentrations examined. These results demonstrate that NaF mimics the effect of PGE2 on catecholamine release from chromaffin cells and suggest that PGE2-evoked catecholamine release may be mediated by the stimulation of phosphoinositide metabolism through a putative GTP-binding protein insensitive to pertussis toxin.  相似文献   
8.
Fruit trees have a long juvenile phase. For example, the juvenile phase of apple (Malus × domestica) generally lasts for 5–12 years and is a serious constraint for genetic analysis and for creating new apple cultivars through cross‐breeding. If modification of the genes involved in the transition from the juvenile phase to the adult phase can enable apple to complete its life cycle within 1 year, as seen in herbaceous plants, a significant enhancement in apple breeding will be realized. Here, we report a novel technology that simultaneously promotes expression of Arabidopsis FLOWERING LOCUS T gene (AtFT) and silencing of apple TERMINAL FLOWER 1 gene (MdTFL1‐1) using an Apple latent spherical virus (ALSV) vector (ALSV‐AtFT/MdTFL1) to accelerate flowering time and life cycle in apple seedlings. When apple cotyledons were inoculated with ALSV‐AtFT/MdTFL1 immediately after germination, more than 90% of infected seedlings started flowering within 1.5–3 months, and almost all early‐flowering seedlings continuously produced flower buds on the lateral and axillary shoots. Cross‐pollination between early‐flowering apple plants produced fruits with seeds, indicating that ALSV‐AtFT/MdTFL1 inoculation successfully reduced the time required for completion of the apple life cycle to 1 year or less. Apple latent spherical virus was not transmitted via seeds to successive progenies in most cases, and thus, this method will serve as a new breeding technique that does not pass genetic modification to the next generation.  相似文献   
9.
Root exudate of Vigna unguiculata was extracted from a soil system consisting of charcoal and vermiculite. Germination stimulating activity for Striga gesnerioides was found in extracts of the soil system, and an active compound was isolated. The chemical structure of the active ingredient was determined to be (+)-4-O-acetylorobanchol, based on analysis of the spectral data of 1-D and 2-D NMR together with nuclear Overhauser effect (NOE) experiments. Application of the active compound to the seeds of S. gesnerioides at a concentration of 0.35 × 10−9 mol/disk led to 69% germination. The germination observed with application of GR-24, a positive control, at 0.57 × 10−10 mol/disk was 80%.  相似文献   
10.
Mouse serum (MS) effected a rapid accumulation of many lipid droplets by cultured cells in the growing or resting state. MS-induced adipose conversion in all of 12 randomly selected cell lines, including human, mink, rat, and mouse cells and almost all of the cells in a culture dish were converted. Under excessive amounts of MS, the cells became mature adipocytes, lost the ability to divide and soon died. However, proliferation of adipocytes induced by smaller quantities of MS was not different from that of control cells in calf serum (CS). When adipose conversion developed, oncorna virus producing cells ceased virus production and there was a clear connection between decrease of virus production and rate of adipose conversion. The adipose conversion of 3T3-FL cells grown for 7 days in the presence of bromodeoxyuridine (BUdR) was inhibited. Actinomycin D (actD) and cycloheximide also inhibited adipose conversion. It is suggested that the cells may have an inherent ability to differentiate into adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号