首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 17 毫秒
1.
We measured hydrolytic rates of four purified cellulases in small increments of temperature (10–50 °C) and substrate loads (0–100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases.  相似文献   
2.
Cellulases hydrolyze cellulose to soluble sugars and this process is utilized in sustainable industries based on lignocellulosic feedstock. Better analytical tools will be necessary to understand basic cellulase mechanisms, and hence deliver rational improvements of the industrial process. In this work we describe a new electrochemical approach to the quantification of the populations of enzyme that are respectively free in the aqueous bulk, adsorbed to the insoluble substrate with an unoccupied active site or threaded with the cellulose strand in the active tunnel. Distinction of these three states appears essential to the identification of the rate-limiting step. The method is based on disposable graphene-modified screen-printed carbon electrodes, and we show how the temporal development in the concentrations of the three enzyme forms can be derived from a combination of the electrochemical data and adsorption measurements. The approach was tested for the cellobiohydrolase Cel7A from Hypocrea jecorina acting on microcrystalline cellulose, and it was found that the threaded enzyme form dominates for this system while adsorbed enzyme with an unoccupied active site constitutes less than 5% of the population.  相似文献   
3.
4.
Previously, we described the unique feature of telomeric regions in Iberian shrew Sorex granarius: its telomeres have two ranges of size, very small (3.8 kb of telomeric repeats on average) and very large discontinuous telomeres (213 kb) interrupted with 18S rDNA. In this study, we have demonstrated extraordinary replication pattern of S. granarius large telomeres that have not been shown before in other studied mammal. Using the ReD-FISH procedure, we observed prolonged, through S period, large telomere replication. Furthermore, revealed ReD-FISH asymmetric signals were probably caused by partial replication of telomeres within an hour of 5-bromodeoxyuridine treatment due to the large size and special organization. We also found that in contrast to the telomeric halo from primary fibroblasts of bovine, mink, and common shrew, telomere halo of S. granarius consists of multiple loops bundled together, some of which contain rDNA. Here, we suggested several replicons firing possibly stochastic in each large telomere. Finally, we performed the TIF assay to reveal DNA damage responses at the telomeres, and along with TIF in nuclei, we found large bodies of telomeric DNA and ?-H2AX in the cytoplasm and on the surface of fibroblasts. We discuss the possibility of additional origin activation together with recombination-dependent replication pathways, mainly homologous recombination including BIR for replication fork stagnation overcoming and further S. granarius large telomere replication.  相似文献   
5.
The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.  相似文献   
6.
The kinetics of cellulose hydrolysis have long been described by an initial fast hydrolysis rate, tapering rapidly off, leading to a process that takes days rather than hours to complete. This behavior has been mainly attributed to the action of cellobiohydrolases and often linked to the processive mechanism of this exo-acting group of enzymes. The initial kinetics of endo-glucanases (EGs) is far less investigated, partly due to a limited availability of quantitative assay technologies. We have used isothermal calorimetry to monitor the early time course of the hydrolysis of insoluble cellulose by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B, which reaches a maximal turnover of about 20 s(-1) at 30 °C and conducts about 1200 catalytic cycles per enzyme molecule in the initial fast phase. For TrCel5A and TrCel12A the extent of the burst is 2-300 cycles per enzyme molecule. The availability of continuous data on EG activity allows an analysis of the mechanisms underlying the initial kinetics, and it is suggested that the slowdown is linked to transient inactivation of enzyme on the cellulose surface. We propose, therefore, that the frequency of structures on the substrate surface that cause transient inactivation determine the extent of the burst phase.  相似文献   
7.
8.
9.
Here we report a novel method for selecting human antibody fragments from nonimmunized variable domain libraries. The antibody fragments are selected on the basis of stabilization of the variable domain fragment (F(v)) in the presence of target antigens ("open sandwich selection"). One variable domain is displayed on phages and another is prepared as soluble molecules. These two reagents are mixed with the biotinylated target molecule and ternary complexes are captured by using streptavidin-conjugated magnet beads. After extensive washing, enriched clones are eluted by using target antigen. Some of the clones selected after 3 rounds are prepared as soluble domains, which then undergo another selection process. We obtained several human antibody fragments specific for human soluble erythropoietin receptor by using this method. Our method minimizes several of the disadvantages associated with human antibody selection through a phage-display system, such as construction of a large-scale library, deletion of genes during selection, and nonspecific binding.  相似文献   
10.
Stem cell therapy for Parkinson’s disease: where do we stand?   总被引:4,自引:0,他引:4  
A major neuropathological feature of Parkinsons disease (PD) is the loss of nigrostriatal dopaminergic neuron. Patients exhibit motor symptoms, including bradykinesia, rigidity, and tremor. Neural grafting has been reported to restore striatial dopaminergic neurotransmission and induce symptomatic relief. The major limitation of cell replacement therapy for PD is the shortage of suitable donor tissue. The present review describes the possible sources of cells, including embryonic stem cells and somatic adult stem cells, both of which potentially could be used in cell therapy for PD, and discusses the advantages and disadvantages of each cell type.Our work described in this article was supported by the National Institute of Health, USA, the Swedish Research Council, the Swedish Parkinsons Disease Foundation, the Syskonen Svenssons Foundation, an USAMRMC grant, and an ATV grant  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号