首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   8篇
  2004年   2篇
  2003年   8篇
  2002年   4篇
  2000年   2篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
Lipopolysaccharides (LPS) are essential envelope components in many Gram-negative bacteria and provide intrinsic resistance to antibiotics. LPS molecules are synthesized in the inner membrane and then transported to the cell surface by the LPS transport (Lpt) machinery. In this system, the ATP-binding cassette (ABC) transporter LptB2FGC extracts LPS from the inner membrane and places it onto a periplasmic protein bridge through a poorly understood mechanism. Here, we show that residue E86 of LptB is essential for coupling the function of this ATPase to that of its partners LptFG, specifically at the step where ATP binding drives the closure of the LptB dimer and the collapse of the LPS-binding cavity in LptFG that moves LPS to the Lpt periplasmic bridge. We also show that defects caused by changing residue E86 are suppressed by mutations altering either LPS structure or transmembrane helices in LptG. Furthermore, these suppressors also fix defects in the coupling helix of LptF, but not of LptG. Together, these results support a transport mechanism in which the ATP-driven movements of LptB and those of the substrate-binding cavity in LptFG are bi-directionally coordinated through the rigid-body coupling, with LptF’s coupling helix being important in coordinating cavity collapse with LptB dimerization.  相似文献   
2.
3.
The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B 370, 20150027. (doi:10.1098/rstb.2015.0027)) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface.  相似文献   
4.

Background and Aims

Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice.

Methodology/Principal Findings

HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-γ in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota.

Conclusion

Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-γ production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.  相似文献   
5.
Celiac disease is a gluten intolerance caused by a T-cell response against human leukocyte antigen (HLA)-DQ2 and DQ8-bound gluten peptides. Some subjects experience gastrointestinal symptoms in the absence of villous atrophy. Here we investigate the potential mechanisms of gut dysfunction in gluten-sensitive HLA-DQ8 transgenic mice. HLA-DQ8 mice were sensitized and gavaged with gliadin 3x/wk for 3 wk (G/G). Controls included 1) nonsensitized mice gavaged with rice (C); 2) gliadin-sensitized mice gavaged with rice (G/R); and 3) BSA-sensitized mice gavaged with BSA (BSA/BSA). CD3(+) intraepithelial lymphocyte, macrophage, and FOX-P3-positive cell counts were determined. Acetylcholine release, small intestinal contractility, and epithelial ion transport were measured. Gut function was investigated after gluten withdrawal and in HLA-DQ6 mice. Intestinal atrophy was not observed in G/G mice. Recruitment of intraepithelial lymphocyte, macrophages, and FOX-P3+ cells were observed in G/G, but not in C, G/R, or BSA/BSA mice. This was paralleled by increased acetylcholine release from the myenteric plexus, muscle hypercontractility, and increased active ion transport in G/G mice. Changes in muscle contractility normalized in DQ8 mice after a gluten withdrawal. HLA-DQ6 controls did not exhibit the abnormalities in gut function observed in DQ8 mice. Gluten sensitivity in HLA-DQ8 mice induces immune activation in the absence of intestinal atrophy. This is associated with cholinergic dysfunction and a prosecretory state that may lead to altered water movements and dysmotility. The results provide a mechanism by which gluten could induce gut dysfunction in patients with a genetic predisposition but without fully evolved celiac disease.  相似文献   
6.
7.
ABSTRACT: AC Biosusceptometry (ACB) was previously employed towards recording gastrointestinal motility. Our data show a reliable and successful evaluation of gastrointestinal transit of liquid and solid meals in rats, considering the methods scarcity and number of experiments needed to endorsement of drugs and medicinal plants. ACB permits real time and simultaneous experiments using the same animal, preserving the physiological conditions employing both meals with simplicity and accuracy.  相似文献   
8.
The prevalence and geographic distribution of white spot syndrome virus (WSSV) infection among cultured penaeid shrimp in the Philippines was determined from January to May, 1999, using PCR (polymerase chain reaction) protocol and Western blot assays. A total of 71 samples consisting of 18 post-larvae (PL) and 53 juvenile/adult shrimp samples (56 to 150 days-of-culture, DOC) were screened for WSSV. Of the 71 samples tested, 51 (72%) were found positive for WSSV by PCR: 61% (31/51) after 1-step PCR and 39% (20/51) after 2-step, non-nested PCR. Of the PL and juvenile/adult shrimp samples tested, 50 and 79% were positive for WSSV, respectively. By Western blot, only 6 of the 51 (12%) PCR-positive samples tested positive for WSSV. Of the 20 samples negative for WSSV by PCR, all tested negative for WSSV by Western blot assay. This is the first report of the occurrence of WSSV in the Philippines.  相似文献   
9.
1. Using a renal cortical slice preparation from the summer-active ground squirrel, Spermophilus lateralis, resting renin release (RR) and tissue cyclic AMP content (TcAMPC) levels were found to be significantly higher and lower, respectively, than those previously reported for its hibernating counterpart. 2. At a 10(-5) M dose, PGE2 but not PGE1, PGF2-alpha or PGA1, significantly stimulated RR in the summer-active ground squirrel (SAGS). 3. Addition of agents which normally increase TcAMPC significantly potentiated the effect of PGE1, while preventing that of PGE2, on RR and TcAMPC. 4. Opposite TcAMPC changes may mediate the in vitro RR responses to PGE1 and PGE2 administration in the SAGS.  相似文献   
10.
Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)6]3-, Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe2+ penetrating into the ferritin interior by adding external Fe2+ to [Fe(CN)6]3- encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe2+ reacts with [Fe(CN)6]3- in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe2+ through the HoSF protein shell. The calculated diffusion coefficient, D approximately 5.8x10(-20) m2/s corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe2+ transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 approximately 40 degrees C. The reaction of Fe3+ with encapsulated [Fe(CN)6]4- also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe2+ reaction. The rate for Fe3+ transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the protein shell is faster than the rate-limiting step of PB dissociation. The method described in this work presents a novel way of determining the rate of transfer of iron and possibly other small molecules through the ferritin shell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号