首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   6篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   13篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2008年   5篇
  2007年   11篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1974年   4篇
  1973年   2篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1959年   1篇
  1945年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
1.
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0–37.8] mg/dl) and slightly reduced in heterozygotes (218 [153–234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.  相似文献   
2.
Glutamatergic transmission in the central nervous system (CNS) is mediated by ionotropic, ligand-gated receptors (iGluRs), and metabotropic receptors (mGluRs). mGluRs are coupled to GTP-binding regulatory proteins (G-proteins) and modulate different second messenger pathways. Multiple effects have been described following their activation; among others, regulation of fast synaptic transmission, changes in synaptic plasticity, and modification of the threshold for seizure generation. Some of the major roles played by the activation of mGluRs might depend on the modulation of high-voltage-activated (HVA) calcium (Ca2+) currents. Some HVA Ca2+ channels (N-, P-, and Q-type channels) are signaling components at most presynaptic active zones. Their mGluR-mediated inhibition reduces synaptic transmission. The interference, by agonists at mGluRs, on L-type channels might affect the repetitive neuronal firing behavior and the integration of complex events at the somatic level. In addition, the mGluR-mediated effects on voltagegated Ca2+ signals have been suggested to strongly influence neurotoxicity. Rather different coupling mechanisms underlie the relation between mGluRs and Ca2+ currents: Together with a fast, membrane-delimited mechanism of action, much slower responses, involving intracellular second messengers, have also been postulated. In the recent past, the relative paucity of selective agonists and antagonists for the different subclasses of mGluRs had hampered the clear definition of the roles of mGluRs in brain function. However, the recent availability of new pharmacological tools is promising to provide a better understanding of the neuronal functions related to different mGluR subtypes. The analysis of the mGluR-mediated modulation of Ca2+ conductances will probably offer new insights into the characterization of synaptic transmission and the development of neuroprotective agents.  相似文献   
3.
4.
The lepidopteran mitochondrial control region: structure and evolution   总被引:8,自引:3,他引:5  
For several species of lepidoptera, most of the approximately 350-bp mitochondrial control-region sequences were determined. Six of these species are in one genus, Jalmenus; are closely related; and are believed to have undergone recent rapid speciation. Recent speciation was supported by the observation of low interspecific sequence divergence. Thus, no useful phylogeny could be constructed for the genus. Despite a surprising conservation of control-region length, there was little conservation of primary sequences either among the three lepidopteran genera or between lepidoptera and Drosophila. Analysis of secondary structure indicated only one possible feature in common--inferred stem loops with higher-than-random folding energies-- although the positions of the structures in different species were unrelated to regions of primary sequence similarity. We suggest that the conserved, short length of control regions is related to the observed lack of heteroplasmy in lepidopteran mitochondrial genomes. In addition, determination of flanking sequences for one Jalmenus species indicated (i) only weak support for the available model of insect 12S rRNA structure and (ii) that tRNA translocation is a frequent event in the evolution of insect mitochondrial genomes.   相似文献   
5.
Several dominantly inherited, late onset, neurodegenerative diseases are due to expansion of CAG repeats, leading to expansion of glutamine repeats in the affected proteins. These proteins are of very different sizes and, with one exception, show no sequence homology to known proteins or to each other; their functions are unknown. In some, the glutamine repeat starts near the N-terminus, in another near the middle and in another near the C-terminus, but regardless of these differences, no disease has been observed in individuals with fewer than 37 repeats, and absence of disease has never been found in those with more than 41 repeats. Protein constructs with more than 41 repeats are toxic to E. coli and to CHO cells in culture, and they elicit ataxia in transgenic mice. These observations argue in favour of a distinct change of structure associated with elongation beyond 37–41 glutamine repeats. The review describes experiments designed to find out what these structures might be and how they could influence the properties of the proteins of which they form part. Poly- -glutamines form pleated sheets of β-strands held together by hydrogen bonds between their amides. Incorporation of glutamine repeats into a small protein of known structure made it associate irreversibly into oligomers. That association took place during the folding of the protein molecules and led to their becoming firmly interlocked by either strand- or domain-swapping. Thermodynamic considerations suggest that elongation of glutamine repeats beyond a certain length may lead to a phase change from random coils to hydrogen-bonded hairpins. Possible mechanisms of expansion of CAG repeats are discussed in the light of looped DNA model structures.  相似文献   
6.
7.
Using a battery of seven lectin-ferritin conjugates as probes for cell surface glycoconjugates, we have studied the pattern of plasmalemmal differentiation of cells in the embryonic rat pancreas from day 15 in utero to the early postpartum stage. Our results indicate that differentiation of plasmalemmal glycoconjugates on acinar, endocrine, and centroacinar cells is temporally correlated with development and is unique for each cell type, as indicated by lectin-ferritin binding. Specifically, (a) expression of adult cell surface saccharide phenotype can be detected on presumptive acinar cells as early as 15 d in utero, as indicated by soybean agglutinin binding, and precedes development of intracellular organelles characteristic of mature acinar cells; (b) maturation of the plasmalemma of acinar cells is reached after intracellular cytodifferentiation is completed, as indicated by appearance of Con A and fucoselectin binding sites only at day 19 of development; conversely, maturation of the endocrine cell plasmalemma is accompanied by "loss" (masking) of ricinus communis II agglutinin receptors; and (c) binding sites for fucose lectins and for soybean agglutinin are absent on endocrine and centroacinar cells at all stages examined. We conclude that acinar, centroacinar, and endocrine cells develop from a common progenitor cell(s) whose plasmalemmal carbohydrate composition resembles most closely that of the adult centroacinar cell. Finally, appearance of acinar lumina beginning at approximately 17 d in utero is accompanied by differenetiation of apical and basolateral plasmalemmal domains of epithelial cells, as indicated by enhanced binding of several lectin-ferritin conjugates to the apical plasmalemmal, a pattern that persists from this stage through adult life.  相似文献   
8.
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation.  相似文献   
9.
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.  相似文献   
10.
Recent evidence suggests that the pathophysiology of neurodegenerative and inflammatory neurological diseases has a neuroimmunological component involving complement, an innate humoral immune defense system. The present study demonstrates the effects of experimentally induced global ischemia on the biosynthesis of C1q, the recognition subcomponent of the classical complement activation pathway, in the CNS. Using semiquantitative in situ hybridization, immunohistochemistry, and confocal laser scanning microscopy, a dramatic and widespread increase of C1q biosynthesis in rat brain microglia (but not in astrocytes or neurons) within 24 h after the ischemic insult was observed. A marked increase of C1q functional activity in cerebrospinal fluid taken 1, 24, and 72 h after the ischemic insult was determined by C1q-dependent hemolytic assay. In the light of the well-established role of complement and complement activation products in the initiation and maintenance of inflammation, the ischemia-induced increase of cerebral C1q biosynthesis and of C1q functional activity in the cerebrospinal fluid implies that the proinflammatory activities of locally produced complement are likely to contribute to the pathophysiology of cerebral ischemia. Pharmacological modulation of complement activation in the brain may be a therapeutic target in the treatment of stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号