首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有8条查询结果,搜索用时 203 毫秒
1
1.
Osmotic adjustment occurred during drought in expanded leaves of sunflowers (Helianthus annuus var Hysun 30) which had been continuously exposed to 660 microliters CO2 per liter or had been previously acclimated to drought. The effect was greatest when the treatments were combined and was negligible in nonacclimated plants grown at 340 microliters CO2 per liter. The concentrations of ethanol soluble sugars and potassium increased during drought but they did not account for the osmotic adjustment. The delay in the decline in conductance and relative water content and in the loss of structural integrity with increasing drought was dependent on the degree of osmotic adjustment. Where it was greatest, conductance fell from 5.8 millimeters per second on the first day of drought to 1.3 millimeters per second on the fourth day and was at approximately the same level on the eighth day. The relative water content remained constant at 85% for three days and fell to 36% on the sixth day. There was no evidence of leaf desiccation even on the eighth day. In contrast, the conductance of leaves showing minimal adjustment fell rapidly after the first day of drought and was negligible after the fourth, at which time the relative water content was 36%. By the sixth day of drought, areas near the margins of the leaves were desiccating and the plants did not recover upon rewatering. Despite the differences in the rate of change of conductance and relative water content during drought, photosynthetic electron transport activity, inferred from measurements of chlorophyll a fluorescence in vivo and PSII activity of isolated thylakoids, remained functional until desiccation occurred.  相似文献   
2.
3.

Aims

Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates.

Methods

We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.

Results

Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g?1 for the half-defoliated treatment and 13 cm2.g?1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.

Conclusions

The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.  相似文献   
4.
Gap junctions composed of connexin (Cx), a large protein family with a number of subtypes, are a main apparatus to maintain cellular homeostasis in many organs. Gap junctional intercellular communication (GJIC) is actively involved in all aspects of the cellular life cycle, ranging from cell growth to cell death. It is also known that the Cx gene acts as a tumor-suppressor due to the maintenance of cellular homeostasis via GJIC. In addition to this function, recent data show that the GJIC-independent function of Cx gene contributes to the tumor-suppressive effect of the gene with specificity to certain cells. With respect to the tumor-suppressive effects, Cx genes acts as tumor-suppressors in primary cancers, but the effects are still conflicting in invasive and metastatic cancers. We have previously reported that Cx32 is specifically downregulated in human renal cell carcinoma (RCC) cell lines as well as cancerous regions when compared to normal regions in kidneys. In recent studies, we have also reported that Cx32 suppresses growth, invasion and metastasis of RCC cells. In this minireview, we refer to a new aspect of Cx32-dependent functions against cell proliferation, invasion and metastasis in RCC cells, especially in a GJIC-independent manner.  相似文献   
5.
The contact repellency of 6 insecticides on one susceptible and 6 resistant strains of the housefly Musca domestica L. were compared. No effect of synergist on repellency was observed and the temperature effect was minor. Both Kdr and Pen resistance factors were significant in repellency resistance to the tested compounds.
Zusammenfassung Die Berührungs-Abstossung von DDT, Pyrethrum, Bioresmethrin, Permethrin, 1,1-bis-(4-äthoxyphenyl)-2-nitropropan und 3-phenoxybenzyl 1-(4-äthoxyphenyl)-2,2-dichlorocyclopropancarboxylat gegenüber einem empfindlichen Stamm sowie sechs resistenten Stämmen der Stubenfliege Musca domestica L. wurde verglichen. Zu den resistenten Stämmen gehörten solche, die DDT-Dehydrochlorinase, Ses, Kdr sowie Resistenzfaktorkombinationen besassen. Die Wirkung der Synergisten Sesamex und Warf-Antiresistent auf die Berührungs-Abstossung und der Einfluss der Temperatur wurden untersucht.
  相似文献   
6.
We have previously reported that a redox-silent analogue of α-tocotrienol (T3), 6-O-carboxypropyl-α-tocotrienol (T3E) shows more potential anti-carcinogenic property than T3 in a lung cancer cell (A549 cell). However, the mechanisms by which T3E exerts its potential anti-carcinogenic effect is still unclear. As tumor malignancy is associated with hypoxia adaptation, in this study, we examined whether T3E could suppress survival and invasion in A549 cells under hypoxia. Hypoxia treatment drastically-induced activation of the protein tyrosine kinase, Src, and its regulated signaling required for hypoxia adaptation of A549 tumor cells. The survival and invasion capacity of the tumor cells under hypoxia was suppressed by T3E via the inactivation of Src. More specifically, T3E-dependent inhibition of Src-induced Akt activation contributed to suppression of cell survival under hypoxia, and the reduction of fibrinolytic factors such as plasminogen activator-1(PAI-1) via the decrease of hypoxia-inducible factor-2α by T3E led to inhibition of hypoxic invasion. Overall these results suggest that T3E suppresses hypoxia adaptation of A549 cells by the inhibition in hypoxia-induced activation of Src signaling.  相似文献   
7.
It has been assumed that prostaglandin (PG)I2 signaling contributes to the negative growth control of lung cancer cells; however, the mechanism remains unresolved. PGI2 functions through a cell surface G protein-coupled receptor (prostaglandin I2-binding receptor, IP) and also exerts an effect by interacting with a nuclear hormone receptor, peroxisome proliferator-activated receptor delta (PPARdelta). We found that PPARdelta was a key molecule of PGI2 signaling to give negative growth control of lung cancer cells (A549), using carbarprostacyclin, a PGI2 agonist for IP and PPARdelta, and L-165041, a PPARdelta agonist. Furthermore, PPARdelta-induced cell growth control was reinforced by the inhibition of cyclooxygenase. These results suggest that PPARdelta activation under the suppression of PG synthesis is important to regulate lung cancer cell growth.  相似文献   
8.
Respiratory adaptation to chronic hypoxia in newborn rats   总被引:2,自引:0,他引:2  
Newborn rats were maintained in an hypoxic chamber (10% O2 in N2) from the day of birth up to 2 wk of postnatal life. Body weight (BW) and nose-tail length were less in the hypoxic exposed (H) rats than in control (C) animals growing in air. Hematocrit rose from about 37% to about 51%. Oxygen consumption (VO2), measured with a manometric method, was lower in H than in C rats; the difference remained at 5-7 days even after normalization by BW. At 5-7 days ventilation, measured with an airflow plethysmograph, was much more elevated in H rats (whether breathing 10% O2 or air) than in C rats, with an increase in both tidal volume and frequency. This indicates that the biphasic ventilatory response, characterized by an initial rise and then a fall of ventilation toward normoxic values, commonly observed in newborns during acute hypoxic challenge is an immediate but only transient response. The dry lung weight-to-BW ratio and alveolar size were larger in H than in C rats. Lung volumes at 20 cmH2O were similar, despite the smaller BW of the H rats. Hence, in the rat, chronic hypoxia in the immediate postnatal period increases O2-carrying capacity, decreases metabolic demands, increases alveolar O2 availability, and promotes structural changes in the lung that protect the gas exchange area and optimize the structure-function relationship of the lung. These results may also suggest that the lung structural alterations with chronic hypoxia should not be attributed to changes in VO2 but, eventually, to the ventilatory action of the organ.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号