首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   7篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   11篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2015年   11篇
  2014年   9篇
  2013年   18篇
  2012年   20篇
  2011年   15篇
  2010年   19篇
  2009年   13篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   4篇
  2004年   9篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有234条查询结果,搜索用时 399 毫秒
1.
Journal of Plant Biochemistry and Biotechnology - Chickpea (Cicer arietinum L.) is a good source of nutrients for animals and human consumption. In the present study, we analyzed the anthocyanin...  相似文献   
2.
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.  相似文献   
3.
Earlier, we reported that CTLA4 expression is inversely correlated with CD38 expression in chronic lymphocytic leukemia (CLL) cells. However, the specific role of CTLA4 in CLL pathogenesis remains unknown. Therefore, to elucidate the possible role of CTLA4 in CLL pathogenesis, CTLA4 was down-regulated in primary CLL cells. We then evaluated proliferation/survival in these cells using MTT, 3H-thymidine uptake and Annexin-V apoptosis assays. We also measured expression levels of downstream molecules involved in B-cell proliferation/survival signaling including STAT1, NFATC2, c-Fos, c-Myc, and Bcl-2 using microarray, PCR, western blotting analyses, and a stromal cell culture system. CLL cells with CTLA4 down-regulation demonstrated a significant increase in proliferation and survival along with an increased expression of STAT1, STAT1 phosphorylation, NFATC2, c-Fos phosphorylation, c-Myc, Ki-67 and Bcl-2 molecules. In addition, compared to controls, the CTLA4-downregulated CLL cells showed a decreased frequency of apoptosis, which also correlated with increased expression of Bcl-2. Interestingly, CLL cells from lymph node and CLL cells co-cultured on stroma expressed lower levels of CTLA4 and higher levels of c-Fos, c-Myc, and Bcl-2 compared to CLL control cells. These results indicate that microenvironment-controlled-CTLA4 expression mediates proliferation/survival of CLL cells by regulating the expression/activation of STAT1, NFATC2, c-Fos, c-Myc, and/or Bcl-2.  相似文献   
4.
A survey of die-back disease of neem was done in different agro climatic regions of Tamil Nadu, India using Global Positioning System (GARMIN 12). Twigs of Azadirachta indica (Neem) infected with die-back were collected from different regions of Tamil Nadu, India and they were further analyzed to determine the pathogen. Phomopsis azadirachtae the causal organism was isolated on malt extract agar from die-back infected neem twigs. They were identified by conventional and molecular methods. Phomopsis genus specific primers (5.8S r-DNA) were then used for the confirmation of P. azadirachtae – the causative agent of die-back of neem by Polymerase chain reaction (PCR). Studies revealed the amplification of expected 141bp DNA in P. azadirachtae isolated from the diseased trees of different regions of Tamil Nadu confirming the causal organism of die-back of neem. Studies revealed a very high incidence of die-back in most of the places of Tamil Nadu. Hand held GPS was used in the study which would help in continuous monitoring of the diseased trees.  相似文献   
5.
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (kinact). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5–6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.  相似文献   
6.
The production of specific secondary metabolites in vitro can be improved through medium supplementation with secondary metabolite precursors, plant growth regulators (PGRs), and abiotic and biotic elicitors. In the present study, node and internode explants of Phyllanthus amarus and P. urinaria collected from Karkala region, Udupi District, Karnataka, India, were inoculated aseptically onto Murashige and Skoog (MS) medium for callus induction. Uniform calluses were inoculated onto MS medium fortified with one of two precursor’s cinnamic acid (CA) or phenylalanine (PA), or with naphthalene acetic acid (NAA). After 30 d of treatment, calluses from treatment and control groups were harvested and quantitatively analyzed for three lignans (phyllanthin, hypophyllanthin and niranthin) and an antioxidant (ellagic acid). Increased amounts of the lignans and ellagic acid were obtained through supplementation with CA, PA, and NAA, and higher ellagic acid was present at higher amounts than the three lignans. These results demonstrated that the Phyllanthus species collected from Karkala region (designated “Accessions3”) show substantial response to CA, PA, and NAA treatment and represent a potential source of donor plants with higher amounts of lignans and antioxidants. These plants can be cultivated on a large scale both in vitro and in vivo for production of important bioactive compounds. Production of these compounds can be further enhanced through induction of somaclonal variant plants with higher amounts of bioactive molecule production and through production of transgenic plants overexpressing genes related to lignan- and phenolic-compound biosynthesis.  相似文献   
7.
Plasmonics - In this study, we report a design concept to obtain center frequency and bandwidth reconfigurable spoof surface plasmon polaritons (SSPP) band-pass filter using T-shaped spoof SPP...  相似文献   
8.
Enterococcus faecalis is a gram‐positive, rod‐shape bacteria responsible for around 65% to 80% of all enterococcal nosocomial infections. It is multidrug resistant (MDR) bacterium resistant to most of the first‐line antibiotics. Due to the emergence of MDR strains, there is an urgent need to find novel targets to develop new antibacterial drugs against Efaecalis. In this regard, we have identified naphthoate synthase (1,4‐dihydroxy‐2‐naphthoyl‐CoA synthase, EC: 4.1.3.36; DHNS) as an anti‐E. faecalis target, as it is an essential enzyme for menaquinone (vitamin K2) synthetic pathway in the bacterium. Thus, inhibiting naphtholate synthase may consequently inhibit the bacteria's growth. In this regard, we report here cloning, expression, purification, and preliminary structural studies of naphthoate synthase along with in silico modeling, molecular dynamic simulation of the model and docking studies of naphthoate synthase with quercetin, a plant alkaloid. Biochemical studies have indicated quercetin, a plant flavonoid as the potential lead compound to inhibit catalytic activity of EfDHNS. Quercetin binding has also been validated by spectrofluorimetric studies in order to confirm the bindings of the ligand compound with EfDHNS at ultralow concentrations. Reported studies may provide a base for structure‐based drug development of antimicrobial compounds against Efaecalis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号