首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin‐1 (TSP‐1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH4Cl, 0.5–2.5 mM) for 1–10 days, and TSP‐1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra‐ and extracellular TSP‐1 levels. Exposure of cultured neurons to conditioned media from ammonia‐treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP‐1 over‐expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP‐1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP‐1 synthesis in other cell types, also reversed the ammonia‐induced TSP‐1 reduction. Likewise, we found a significant decline in TSP‐1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP‐1 may represent an important therapeutic target for CHE.

  相似文献   

2.
Abstract

Trypsin, a serine protease enzyme plays a pivotal role in digestion and is autocatalytic. The crystal structure of a complex formed between porcine trypsin and an auto catalytically produced peptide is reported here. This complex shows a reduction in enzyme activity as compared to native β-trypsin. The nonapeptide has a lysine, which is recognized by Asp 189 at the specificity pocket. The auto catalytically produced native nonapeptide is bound at the active site cleft like other trypsin inhibitors but the important interactions with the oxyanion hole are absent. The peptide covers only a part of the active site cleft and hence the enzyme activity is reduced rather than being inhibited.  相似文献   
3.
Abstract Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y(1)-Y(5) and y(6). Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   
4.
Abstract

Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   
5.
Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   
6.
Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na–K–Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.  相似文献   
7.
Designed synthetic heterochiral peptides, when added to porcine trypsin, resulted in reduction of enzyme activity. The crystal structure of a complex formed between porcine trypsin and a heterochiral hepta peptide Boc-Pro-DAsp-Aib-Leu-Aib-Leu-Ala-NHMe has been determined at 1.9 A resolution. The hepta peptide does not bind at the active site, but is located in the interstitial region, and interacts with the calcium-binding loop (residues 60-80). The bound peptide interacts with the active site residue Ser195 through an acetate ion, and with Lys 60 mediated by water molecules. The structure, when compared with the other trypsin-peptide complexes, suggests that the flexibility of surface loops, concerted movement of the loops towards the active site, and the interaction of the bound peptide with Lys 60, may be responsible for the reduction in enzyme activity. This study provides a structural evidence for the earlier biochemical observation regarding the role of surface loops in the catalysis of the enzyme.  相似文献   
8.
Trypsin, a serine protease enzyme plays a pivotal role in digestion and is autocatalytic. The crystal structure of a complex formed between porcine trypsin and an auto catalytically produced peptide is reported here. This complex shows a reduction in enzyme activity as compared to native beta-trypsin. The nonapeptide has a lysine, which is recognized by Asp 189 at the specificity pocket. The auto catalytically produced native nonapeptide is bound at the active site cleft like other trypsin inhibitors but the important interactions with the oxyanion hole are absent. The peptide covers only a part of the active site cleft and hence the enzyme activity is reduced rather than being inhibited.  相似文献   
9.
Abstract

Designed synthetic heterochiral peptides, when added to porcine trypsin, resulted in reduction of enzyme activity. The crystal structure of a complex formed between porcine trypsin and a heterochiral hepta peptide Boc-Pro-DAsp-Aib-Leu-Aib-Leu-Ala-NHMe has been determined at 1.9 Å resolution. The hepta peptide does not bind at the active site, but is located in the interstitial region, and interacts with the calcium-binding loop (residues 60–80). The bound peptide interacts with the active site residue Ser195 through an acetate ion, and with Lys 60 mediated by water molecules. The structure, when compared with the other trypsin-peptide complexes, suggests that the flexibility of surface loops, concerted movement of the loops towards the active site, and the interaction of the bound peptide with Lys 60, may be responsible for the reduction in enzyme activity. This study provides a structural evidence for the earlier biochemical observation regarding the role of surface loops in the catalysis of the enzyme.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号