首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2019年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
  1954年   2篇
  1943年   1篇
  1939年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
1.
2.
3.
The data requirements and resources needed to develop multispecies indicators of fishing impacts are often lacking and this is particularly true for coral reef fisheries. Size-spectra, relationships between abundance and body-size class, regardless of taxonomy, can be calculated from simple sizeabundance data. Both the slope and the mid-point height of the relationship can be compared at different fishing intensities. Here, we develop size-spectra for reef fish assemblages using body size- abundance data collected by underwater visual census in each of ten fishing grounds across a known gradient of fishing intensity in the Kadavu Island group, Fiji. Slopes of the size-spectra became steeper (F9,69=3.20, p<0.01) and the height declined (F9,69=15.78, p<0.001) with increasing fishing intensity. Regressions of numbers of individuals per size class across grounds were negative for all size classes, although the slope was almost zero for the smallest size class. Response to exploitation of each size class category was greatest for larger fish. Steepening of the slope with increasing fishing intensity largely resulted from reductions in the relative abundance of large fish and not from the ecological release of small fish following depletion of their predators. The slope and height of the size-spectrum appear to be good indicators of fishing effects on reef fish assemblages.  相似文献   
4.
The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs). Zooplankton (z), epi- and supra-benthic macrofauna were collected in the Southern Bight, at the Oyster Grounds and at North Dogger, 111 km north of the Dogger Bank. The study included 22 taxonomic groups with particular reference to Mollusca (Bivalvia and Gastropoda) and Crustacea. Primary consumers (Bivalvia) were overall most 15N enriched in the southern North Sea (6.1‰) and more depleted in the Oyster Grounds (5.5‰) and at North Dogger (2.8‰) demonstrating differences in isotopic baselines for bivalve fauna between the study sites. Higher trophic levels also followed this trend. Over an annual cycle, consumers tended to exhibit 15N depletion during spring followed by 15N enriched signatures in autumn and winter. The observed seasonal changes of δ 15N were more pronounced for suspension feeders and deposit feeders (dfs) than for filter feeders (ffs). The position of animals in plots of δ 13C and δ 15N largely concurred with the expected position according to literature-based functional feeding groups. PLFA fingerprints of groups such as z were distinct from benthic groups, e.g. benthic ffs and dfs, and predatory macrobenthos. δ 13CPLFA signatures indicated similarities in 13C moiety sources that constituted δ 13CPLFA. Although functional groups of pelagic zooplankton and (supra-) benthic animals represented phylogenetically distinct consumer groups, δ 13CPLFA demonstrated that both groups were supported by pelagic primary production and relied on the same macronutrients such as PLFAs. Errors related to the static categorization of small invertebrates into fixed trophic positions defined by phylogenetic groupings rather than by functional feeding groups, and information on seasonal trophodynamic variability, may have implications for the reliability of numerical marine ecosystem models.  相似文献   
5.
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites.  相似文献   
6.
This study shows how capture–mark–recapture (CMR) models can provide robust estimates of detection heterogeneity (sources of bias) in underwater visual‐census data. Detection biases among observers and fish family groups were consistent between fished and unfished reef sites in Kenya, even when the overall level of detection declined between locations. Species characteristics were the greatest source of detection heterogeneity and large, highly mobile species were found to have lower probabilities of detection than smaller, site‐attached species. Fish family and functional‐group detectability were also found to be lower at fished locations, probably due to differences in local abundance. Because robust CMR models deal explicitly with sampling where not all species are detected, their use is encouraged for studies addressing reef‐fish community dynamics.  相似文献   
7.
8.
 The consequences of macroalgal overgrowth on reef fishes and means to reverse this condition have been little explored. An experimental reduction of macroalgae was conducted at a site in the Watamu Marine National Park in Kenya, where a documented increase in macroalgal cover has occurred over the last nine years. In four experimental 10 m by 10 m plots, macroalgae were greatly reduced (fleshy algal cover reduced by 84%) by scrubbing and shearing, while four similar plots acted as controls. The numerical abundance in all fish groups except wrasses and macroalgal-feeding parrotfishes (species in the genera Calotomus and Leptoscarus) increased in experimental algal reduction plots. Algal (Sargassum) and seagrass (Thalassia) assays, susceptible to scraping and excavating parrotfishes, were bitten more frequently in the algal reduction plots one month after the manipulation. Further, surgeonfish (Acanthurus leucosternon and A. nigrofuscus) foraging intensity increased in these algal reduction plots. The abundance of triggerfishes increased significantly in experimental plots relative to control plots, but densities remained low, and an index of sea urchin predation using tethered juvenile and adult Echinometra mathaei showed no differences between treatments following macroalgal reduction. Dominance of reefs by macrofleshy algae appears to reduce the abundance of fishes, mostly herbivores and their rates of herbivory, but also other groups such as predators of invertebrates (triggerfishes, butterflyfishes and angelfishes). Accepted: 2 February 1999  相似文献   
9.
With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate.  相似文献   
10.
Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号