首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   6篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   2篇
  2014年   7篇
  2013年   10篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1991年   1篇
  1987年   2篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
2.
Nitric oxide signaling during myocardial angiogenesis   总被引:2,自引:0,他引:2  
Ischemic heart disease develops as a consequence of coronary atherosclerotic lesion formation. Coronary collateral vessels and microvascular angiogenesis develop as an adaptive response to myocardial ischemia, which ameliorates the function of the damaged heart. Angiogenesis, the formation of new blood vessels from pre-existing vascular bed, is of paramount importance in the maintenance of vascular integrity both in the repair process of damaged tissue and in the formation of collateral vessels in response to tissue ischemia. Angiogenesis is modulated by a multitude of cytokines/chemokines and growth factors. In this regard, angiogenesis cannot be viewed as a single process. It is likely that different mediators are involved in different phases of angiogenesis. Vascular endothelial cells (ECs) produce nitric oxide (NO), an endothelium-derived labile molecule, which maintains vascular homeostasis and thereby prevents vascular atherosclerotic changes. In patients with ischemic heart disease, the release of endothelium-derived NO is decreased, which plays an important role in the atherosclerotic disease progression. In recent years, endothelium-derived NO has been shown to modulate angiogenesis in vitro and in vivo. In this review, we summarize recent progress in the field of the NO-mediated regulation of postnatal angiogenesis, particularly in response to myocardial ischemia.  相似文献   
3.
It has long been recognized that magnesium is associated with several important diseases, including diabetes, hypertension, cardiovascular, and cerebrovascular diseases. In the present study, we measured the intracellular free Mg2+ concentration ([Mg2+]i) using 31P nuclear magnetic resonance (NMR) in pig carotid artery smooth muscle. In normal solution, application of amiloride (1 mm) decreased [Mg2+]i by approximately 12% after 100 min. Subsequent washout tended to further decrease [Mg2+]i. In contrast, application of amiloride significantly increased [Mg2+]i (by approximately 13% after 100 min) under Ca2+-free conditions, where passive Mg2+ influx is facilitated. The treatments had little effect on intracellular ATP and pH (pHi). Essentially the same Ca2+-dependent changes in [Mg2+]i were produced with KB-R7943, a selective blocker of reverse mode Na+-Ca2+ exchange. Application of dimethyl amiloride (0.1 mM) in the presence of Ca2+ did not significantly change [Mg2+]i, although it inhibited Na+-H+ exchange at the same concentration. Removal of extracellular Na+ caused a marginal increase in [Mg2+]i after 100-200 min, as seen in intestinal smooth muscle in which Na+-Mg2+ exchange is known to be the primary mechanism of maintaining a low [Mg2+]i against electrochemical equilibrium. In Na+-free solution (containing Ca2+), neither amiloride nor KB-R7943 decreased [Mg2+]i, but they rather increased it. The results suggest that these inhibitory drugs for Na+-Ca2+ exchange directly modulate Na+-Mg2+ exchange in a Ca2+-dependent manner, and consequently produce the paradoxical decrease in [Mg2+]i in the presence of Ca2+.  相似文献   
4.
Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.  相似文献   
5.
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.  相似文献   
6.
To adapt the physical properties of living materials to their biological function, nature developed various types of polymers with outstanding physical behavior. One example is the vitreous body, which is important intraocular elements not only because of its optical and mechanical performances, but also due to its important role in the pathogenesis and treatment of conditions affecting adjacent tissues and eventually the whole eye. Here, we report a novel biocompatible material for injectable vitreous substitute, composed of thermosensitive amphiphilic polymer, which is capable of forming a transparent gel in the vitreous cavity. It is nontoxic, provides adequate support for the retina, and allows light to reach the sensory elements at the back of the eye. The amphiphilic polymer exhibits mechanical stability by assembling to form highly interconnected hydrophobic domains, which leads to the constitution of a network structure.  相似文献   
7.
A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.  相似文献   
8.
The possible role of calcineurin in cardiac hypertrophy induced by calmodulin (CaM) overexpression in the heart was investigated. CaM transgenic (CaM-TG) mice developed marked cardiac hypertrophy and exhibited up-regulation of atrial natriuretic factor (ANF) and beta-myosin heavy chain gene expression in the heart during the first 2 weeks after birth. The activity of calcineurin in the heart was also significantly increased in CaM-TG mice compared with wild-type littermates. Treatment of CaM-TG mice with the calcineurin inhibitor FK506 (1mg/kg per day) prevented the increase in the heart-to-body weight ratio as well as that in cardiomyocyte width. FK506 also inhibited the induction of fetal-type cardiac gene expression in CaM-TG mice. Overexpression of CaM in cultured rat cardiomyocytes activated the ANF gene promoter in a manner sensitive to FK506. Activation of a calcineurin-dependent pathway thus contributes to the development of cardiac hypertrophy induced by CaM overexpression in the heart.  相似文献   
9.
Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1(+)) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1(+) cells were sorted and shown to differentiate into VE-cadherin(+) endothelial cells and α-SMA(+) smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1(+) cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1(+) cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1(+) cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1(+) cells from young or old mice. Transplantation of Flk-1(+) cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1(+) cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging.  相似文献   
10.
Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front-rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2-containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号