首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1965年   1篇
排序方式: 共有37条查询结果,搜索用时 76 毫秒
1.
2.
Biochemistry (Moscow) - This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback...  相似文献   
3.
MARCO is a type II transmembrane protein of the class A scavenger receptor family. It has a short N-terminal cytoplasmic domain, a transmembrane domain, and a large extracellular part composed of a 75-residue long spacer domain, a 270-residue collagenous domain, and a 99-residue long scavenger receptor cysteine-rich (SRCR) domain. Previous studies have indicated a role for this receptor in anti-microbial host defense functions. In this work we have produced the extracellular part of MARCO as a recombinant protein, and analyzed its binding properties. The production of this protein, soluble MARCO (sMARCO), has made it possible for the first time to study MARCO and its binding properties in a cell-free system. Using circular dichroism analyses, a protease-sensitive assay, and rotary shadowing electron microscopy, sMARCO was shown to have a triple-helical collagenous structure. Rotary shadowing also demonstrated that the molecules often associate with each other via the globes. sMARCO was found to bind avidly both heat-killed and living bacteria. Lipopolysaccharide, an important component of the outer membrane of Gram-negative bacteria, was shown to be a ligand of MARCO. Studies with different bacterial strains indicated that the O-side chain of lipopolysaccharide is not needed for the bacterial recognition. Finally, the C-terminal SRCR domain was also produced as a recombinant protein, and its bacteria-binding capability was studied. Although the transfection experiments with transmembrane MARCO variants have indicated a crucial role for this domain in bacterial binding, the monomeric domain exhibited low, barely detectable bacteria-binding activity. Thus, it is possible that cooperation between the SRCR domain and the collagenous domain is needed for high-affinity bacterial binding, or that the SRCR domain has to be in a trimeric form to effectively bind to bacteria.  相似文献   
4.
Virtual screening of a library of commercially available compounds versus the structure of Mycobacterium tuberculosis lumazine synthase identified 2-(2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamido)acetic acid (9) as a possible lead compound. Compound 9 proved to be an effective inhibitor of M. tuberculosis lumazine synthase with a Ki of 70 μM. Lead optimization through replacement of the carboxymethylsulfonamide sidechain with sulfonamides substituted with alkyl phosphates led to a four-carbon phosphate 38 that displayed a moderate increase in enzyme inhibitory activity (Ki 38 μM). Molecular modeling based on known lumazine synthase/inhibitor crystal structures suggests that the main forces stabilizing the present benzindolone/enzyme complexes involve π–π stacking interactions with Trp27 and hydrogen bonding of the phosphates with Arg128, the backbone nitrogens of Gly85 and Gln86, and the side chain hydroxyl of Thr87.  相似文献   
5.
6.
These studies were conducted in 1999–2010 on the territory of the Zvenigorod Biological Station of Moscow State University (western Moscow suburbs, 55°44′ N, 36°51′ E). Birds (Parus ater) were caught by mist-nets. All the birds were banded and weighed, and their fat reserves were determined; then, the birds were released. A total of 85 individuals were caught. The standard metabolic rate and respiratory quotient (by the method of indirect calorimetry) were measured in 46 experiments with 16 birds. Two peaks were distinguished in the daily locomotor activity: a strongly pronounced daily peak (from 6 a.m. to 4 p.m.) and a weak evening peak (from 6 to 10 p.m.). The body mass did not change during the day. However, some trend for an increase in the mean body mass toward the middle and end of the day was noted. The fat reserves drastically changed during the day. The metabolic rate and respiratory quotient had a well-pronounced diurnal rhythm with minimal values at night (from 12 p.m. to 4 a.m.) and maximum values in the afternoon (from 12 a.m. to 4 p.m.). The total energy budget of Parus ater in the autumn-winter period, energy balance, and the maintenance of constant flying weight along with the dynamics of fat reserves are discussed.  相似文献   
7.
Recently, a large number of papers have appeared that describe the successful use of various biologically active compounds (short peptides, mitochondrial antioxidants, antidiabetic biguanides, mimetics of dietary restriction, autophagy modulators, etc.) as geroprotectors. However, in our opinion, in most cases, the positive results of such studies are determined by a “successful” selection of control objects. Animals with certain abnormalities are often used for this purpose, so that any favorable effect on the corresponding pathological processes leads to an increase in their lifespan. In addition, control animals can be normal (i.e., wildtype) but placed under certain extreme conditions that can be overcome just by using certain biologically active compounds. Thus, in this case, the treatment of pathologies rather than the effect on fundamental processes of aging is observed. There is a point of view that the results of Clive McCay’s well-known experiments, which have significantly prolonged the life of rats by limiting caloric intake, were determined by the facts that, firstly, the control animals fed ad libitum (which is absolutely untypical for animals in the wild) and, secondly, Fisher-344 rats, which were used in these experiments, are short-lived. The above considerations, apparently, also apply to the gerontological experiments on cultured cells. In particular, we sometimes hear remarks from our colleagues regarding the model of “stationary phase aging” of cell cultures, which is used in our laboratory, due to the fact that most of the experiments are performed on transformed rather than normal cells. However, this approach seems to us quite justified, because the phenomenon of “stationary phase”/chronological aging is common to a wide variety of cells, including bacteria, yeasts, cyanobacteria, mycoplasmas, as well as animal and plant cells. Cells with an unlimited mitotic potential do not change either from experiment to experiment or during long-term cultivation both with and without subcultivation (within the framework of the stationary phase aging model), which cannot be said of the normal diploid fibroblasts, whose telomeres are shortened with each division. In the period from seeding to entering the stationary phase of growth, the cells divide up to ten times! We believe that, to search for effective geroprotectors that affect the fundamental mechanisms of aging, it is necessary to perform studies on “maximally healthy” animals or on “maximally stable” model systems.  相似文献   
8.
9.
10.
Nephrin is a signalling cell-cell adhesion protein of the Ig superfamily and the first identified component of the slit diaphragm that forms the critical and ultimate part of the glomerular ultrafiltration barrier. The extracellular domains of the nephrin molecules form a network of homophilic and heterophilic interactions building the structural scaffold of the slit diaphragm between the podocyte foot processes. The intracellular domain of nephrin is connected indirectly to the actin cytoskeleton, is tyrosine phosphorylated, and mediates signalling from the slit diaphragm into the podocytes. CD2AP, podocin, Fyn kinase, and phosphoinositide 3-kinase are reported intracellular interacting partners of nephrin, although the biological roles of these interactions are unclarified. To characterize the structural properties and protein-protein interactions of the nephrin intracellular domain, we produced a series of recombinant nephrin proteins. These were able to bind all previously identified ligands, although the interaction with CD2AP appeared to be of extremely low stoichiometry. Fyn phosphorylated nephrin proteins efficiently in vitro. This phosphorylation was required for the binding of phosphoinositide 3-kinase, and significantly enhanced binding of Fyn itself. A protein of 190 kDa was found to associate with the immobilized glutathione S-transferase-nephrin. Peptide mass fingerprinting and amino acid sequencing identified this protein as IQGAP1, an effector protein of small GTPases Rac1 and Cdc42 and a putative regulator of cell-cell adherens junctions. IQGAP1 is expressed in podocytes at significant levels, and could be found at the immediate vicinity of the slit diaphragm. However, further studies are needed to confirm the biological significance of this interaction and its occurrence in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号