首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  2016年   1篇
  2012年   1篇
  2008年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 78 毫秒
1
1.
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the α-subunit of the translation initiation factor eIF-2, inhibiting its function. PKR is activated in vitro by binding to double-stranded RNA (dsRNA) molecules of ~30 bp or longer. Here we show that triple helix forming oligonucleotides (TFOs) inhibit dsRNA binding to the isolated RNA binding domain of PKR. The inhibition is specific to the targeted RNA and dependent on TFO length. Binding to a 30 bp duplex is inhibited by a 28 nt TFO and a 20 nt TFO with an IC50 of 35 ± 2 and 210 ± 22 nM, respectively. An 18 nt TFO partially inhibits binding. The activation of the kinase domain of PKR by a 30 bp RNA duplex is also inhibited by a 28 nt TFO. Inhibition of binding is most effective when the triple helix is formed prior to addition of the protein. These results indicate that triplex formation can be used to prevent the binding of an RNA binding protein with dsRNA-binding motifs.  相似文献   
2.
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the eukaryotic initiation factor 2α, rendering the translation machinery inactive. Viruses have developed strategies for preventing the action of PKR, one of which is the production of small RNAs that inhibit the enzyme. Epstein–Barr virus (EBV) encodes EBER1, a 167 nucleotide non-coding RNA that is constitutively expressed by the EBV-infected cells. EBER1 binds PKR in vitro and has been shown to prevent inhibition of translation by PKR in vitro. We used affinity cleavage by the EDTA·Fe-modified double-stranded RNA-binding domain (dsRBD) of PKR to show that stem–loop IV (nucleotides 87–123) of EBER1 makes specific contacts with the dsRBD. To further demonstrate the specificity of this interaction, we generated a deletion mutant of EBER1, comprising only stem–loop IV (mEBER1). Cleavage patterns produced on mEBER1 by the bound dsRBD were remarkably similar to those found on full-length EBER1. Using cleavage data from two different dsRBD mutants, we present a model of the interaction of PKR dsRBD and mEBER1.  相似文献   
3.
Anthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis. The vast majority of the anthrax toxin-related literature describes the assembly of LT as a cell-dependent process. However, some reports have provided evidence for the existence of a fully assembled LT, either in vitro or in the bloodstream of anthrax-infected animals. To follow up on this work, we present studies on fully-assembled LT. We first demonstrate facile and cell-free assembly and purification of LT. We then show that fully assembled LT binds an anthrax toxin receptor with almost 100-fold higher affinity than the protective antigen (PA) alone. Quantitative cell intoxication assays were used to determine the LD50 (lethal dose 50) for LT. The cell-binding studies revealed that LT binds mammalian cells using a different mode from PA. Even when PA-specific receptors were blocked, fully assembled LT was able to bind the cell surface. Our studies support the existing evidence that LT fully assembles in the blood stream and can bind and intoxicate mammalian cells with very high affinity and efficacy. More importantly, the data presented here invoke the possibility that LT may bind cells in a receptor-independent fashion, or recognize receptors that do not interact with PA. Hence, blood borne LT may emerge as a novel therapeutic target for combating anthrax.  相似文献   
4.
This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame. Molecular modeling and binding measurements reveal that the VWA-Fc dimer binds to PA with high affinity (K (D) = 0.2 nM). An in vitro bio-luminescence assay shows that VWA-Fc (at nanomolar concentration) protects mouse macrophages from lysis by PA/LF. In vivo studies demonstrate that VWA-Fc at low doses ( approximately 50 mug/animal) are able to rescue animals from lethal doses of PA/LF and B. anthracis spores. Finally, VWA-Fc is utilized as the capture molecule in the sensitive (down to 30 picomolar) detection of PA using surface plasmon resonance.  相似文献   
5.
Spanggord RJ  Vuyisich M  Beal PA 《Biochemistry》2002,41(14):4511-4520
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates and inhibits the function of the translation initiation factor eIF-2. PKR has a double-stranded RNA-binding domain (dsRBD) composed of two copies of the dsRNA binding motif (dsRBM). PKR's dsRBD is involved in the regulation of the enzyme as dsRNAs of cellular and viral origins bind to the dsRBD, leading to either activation or inhibition of PKR's kinase activity. In this study, we site-specifically modified each of the dsRBMs of PKR's dsRBD with the hydroxyl radical generator EDTA small middle dotFe and performed cleavage studies on kinase-activating and kinase-inhibiting RNAs. These experiments led to the identification of binding sites for the individual dsRBMs on various RNA ligands including a viral activating RNA (TAR from HIV-1), a viral inhibiting RNA (VA(I) RNA from adenovirus), an aptamer RNA that activates PKR, and a small synthetic inhibiting RNA. These results indicate that some RNAs interact only with one dsRBM, while others can bind both dsRBMs of PKR. In addition, EDTA small middle dotFe modification coupled with site-directed mutagenesis was used to assess the extent of cooperativity in the binding of the two dsRBMs. These experiments support the hypothesis that simultaneous binding of both dsRBMs of PKR occurs on kinase activating RNA ligands.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号